Climatically driven yield variability of major crops in Khakassia (South Siberia)

  • Elena A. Вabushkina
  • Liliana V. Belokopytova
  • Dina F. Zhirnova
  • Santosh K. Shah
  • Tatiana V. Kostyakova
Original Paper

Abstract

We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May–July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2–11% in the next decade due to increasing of the regional summer temperatures.

Keywords

Crops yield variability Temperature Precipitation Hydrothermal coefficient South Siberia 

Supplementary material

484_2017_1496_MOESM1_ESM.pdf (655 kb)
ESM 1 (PDF 654 kb)

References

  1. Abd El-Kareem THA, El-Saidy AEA (2011) Evaluation of yield and grain quality of some bread wheat genotypes under normal irrigation and drought stress conditions in calcareous soils. J Biol Sci 11(2):156–164.  https://doi.org/10.3923/jbs.2011.156.164CrossRefGoogle Scholar
  2. Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Chang 11(S1):151–158.  https://doi.org/10.1007/s10113-010-0173-xCrossRefGoogle Scholar
  3. Ceglar A, Toreti A, Lecerf R, Van der Velde M, Dentener F (2016) Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agric For Meteorol 216:58–67.  https://doi.org/10.1016/j.agrformet.2015.10.004CrossRefGoogle Scholar
  4. Dong T, Liu J, Shang J, Qian B, Huffman T, Zhang Y, Champagne C, Daneshfar B (2016) Assessing the impact of climate variability on cropland productivity in the Canadian Prairies using time series MODIS FAPAR. Remote Sens 8(4):281.  https://doi.org/10.3390/rs8040281
  5. Fishman R (2016) More uneven distributions overturn benefits of higher precipitation for crop yields. Environ Res Lett 11(2):024004.  https://doi.org/10.1088/1748-9326/11/2/024004CrossRefGoogle Scholar
  6. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22(2):107–121.  https://doi.org/10.1016/j.dendro.2005.02.004CrossRefGoogle Scholar
  7. Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567Google Scholar
  8. Hlavinka P, Trnka M, Semerádová D, Dubrovský M, Žalud Z, Možný M (2009) Effect of drought on yield variability of key crops in Czech Republic. Agric For Meteorol 149(3-4):431–442.  https://doi.org/10.1016/j.agrformet.2008.09.004CrossRefGoogle Scholar
  9. Iizumi T, Ramankutty N (2016) Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ Res Lett 11(3):034003.  https://doi.org/10.1088/1748-9326/11/3/034003CrossRefGoogle Scholar
  10. Kattsov VM, Semenov SM (eds) (2014) Second Roshydromet assessment report on climate change and its consequences in Russian Federation. Roshydromet, Moscow, p 54Google Scholar
  11. Koehler A-K, Challinor AJ, Hawkins E, Asseng S (2013) Influences of increasing temperature on Indian wheat: quantifying limits to predictability. Environ Res Lett 8(3):034016.  https://doi.org/10.1088/1748-9326/8/3/034016CrossRefGoogle Scholar
  12. Liu B, Liu L, Asseng S, Zou X, Li J, Cao W, Zhu Y (2016) Modelling the effects of heat stress on post-heading durations in wheat: A comparison of temperature response routines. Agric For Meteorol 222:45–58.  https://doi.org/10.1016/j.agrformet.2016.03.006CrossRefGoogle Scholar
  13. Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002.  https://doi.org/10.1088/1748-9326/2/1/014002CrossRefGoogle Scholar
  14. Lobell D, Burke M (eds) (2010) Climate change and food security: Adapting agriculture to a warmer world. Springer, Dordrecht, p 201.  https://doi.org/10.1007/978-90-481-2953-9Google Scholar
  15. Mohan D, Gupta RK (2015) Relevance of physiological efficiency in wheat grain quality and the prospects of improvement. Physiol Mol Biol Plants 21(4):591–596.  https://doi.org/10.1007/s12298-015-0329-8CrossRefGoogle Scholar
  16. Mukula J, Rantanen O (1989) Climatic risks to the yield and quality of field crops in Finland: III. Winter rye 1969–1986. Ann Agric Fenn 28:3–11Google Scholar
  17. Nazimova DI, Tsaregorodtsev VG, Andreyeva NM (2010) Forest vegetation zones of Southern Siberia and current climate change. Geogr Nat Resour 31(2):124–131.  https://doi.org/10.1016/j.gnr.2010.06.006CrossRefGoogle Scholar
  18. Novikova LY, Dyubin VN, Seferova IV, Loskutov IG, Zuev EV (2012) Prediction of vegetation period duration in spring cereal crops varieties in the conditions of climate changes. Agric Вiol (5):78–87.  https://doi.org/10.15389/agrobiology.2012.5.78eng
  19. Ozturk A, Aydin F (2004) Effect of water stress at various growth stages on some quality characteristics of winter wheat. J Agron Crop Sci 190(2):93–99.  https://doi.org/10.1046/j.1439-037X.2003.00080.xCrossRefGoogle Scholar
  20. Peters K, Jacoby GC, Cook ER (1981) Principal components analysis of tree-ring sites. Tree-Ring Bull 41:1–19Google Scholar
  21. RF. Government of the Republic of Khakassia (2011) Territorial planning scheme of the Republic of Khakassia. Approved by Resolution No 763 from 14 Nov 2011. Retrieved from http://www.pravo.gov.ru/proxy/ips/?docbody=&nd=167019881 [In Russian]
  22. Selyaninov GT (1937) Methods of climate description to agricultural purposes. In: Selyaninov GT (ed) World climate and agriculture handbook. Gidrometeoizdat, Leningrad, pp 5–27Google Scholar
  23. Sivakumar MVK, Motha RP, Das HP (2005) Natural disasters and extreme events in agriculture. Springer, Berlin, Heidelberg, p 367.  https://doi.org/10.1007/3-540-28307-2
  24. Tchebakova NM, Monserud RA, Leemans R, Nazimova DI (1995) Possible vegetation shifts in Siberia under climatic change. In: Pernetta J, Leemans R, Elder D, Humphrey S (eds) The impact of climate change on ecosystems and species: terrestrial ecosystems. IUCN, Gland, pp 67–83Google Scholar
  25. Therrell MD, Stahle DW, Diaz JV, Cornejo Oviedo EH, Cleaveland MK (2006) Tree-ring reconstructed maize yield in central Mexico: 1474–2001. Clim Chang 74(4):493–504.  https://doi.org/10.1007/s10584-006-6865-zCrossRefGoogle Scholar
  26. USSR. Hydrometeorological Service (1974) Agroclimatic Resources of the Krasnoyarsk Krai and of the Tuva ASSR. Hydrometeoizdat, Leningrad, p 211 [In Russian]Google Scholar
  27. Vedrov NG, Lazarev YG (1997) Seed production and variety investigation of field crops in Krasnoyarsk Krai. KSU, Krasnoyarsk, p 138 [In Russian]Google Scholar
  28. Wang R, Bowling LC, Cherkauer KA (2016a) Estimation of the effects of climate variability on crop yield in the Midwest USA. Agric For Meteorol 216:141–156.  https://doi.org/10.1016/j.agrformet.2015.10.001CrossRefGoogle Scholar
  29. Wang X, Cai D, Wu H, Hoogmoed WB, Oenema O (2016b) Effects of variation in rainfall on rainfed crop yields and water use in dryland farming areas in China. Arid Land Res Manag 30(1):1–24.  https://doi.org/10.1080/15324982.2015.1012686CrossRefGoogle Scholar
  30. White J, Edwards J (eds) (2008) Wheat growth and development. NSW Department of Primary Industries, Orange, p 92Google Scholar
  31. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with application in dendrochronology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213.  https://doi.org/10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2CrossRefGoogle Scholar
  32. Wu X, Babst F, Ciais P, Frank D, Reichstein M, Wattenbach M, Zang C, Mahecha MD (2014) Climate-mediated spatiotemporal variability in terrestrial productivity across Europe. Biogeosciences 11:3057–3068.  https://doi.org/10.5194/bg-11-3057-2014CrossRefGoogle Scholar
  33. Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117.  https://doi.org/10.1007/s11120-013-9874-6CrossRefGoogle Scholar
  34. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421.  https://doi.org/10.1111/j.1365-3180.1974.tb01084.xCrossRefGoogle Scholar
  35. Zhang H, Tao F, Xiao D, Shi W, Liu F, Zhang S, Liu Y, Wang M, Bai H (2016) Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China. Front Earth Sci 10(2):315–327.  https://doi.org/10.1007/s11707-015-0527-2CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  • Elena A. Вabushkina
    • 1
  • Liliana V. Belokopytova
    • 1
  • Dina F. Zhirnova
    • 1
  • Santosh K. Shah
    • 2
  • Tatiana V. Kostyakova
    • 1
  1. 1.Khakass Technical InstituteSiberian Federal UniversityAbakanRussia
  2. 2.Birbal Sahni Institute of PalaeosciencesLucknowIndia

Personalised recommendations