International Journal of Biometeorology

, Volume 62, Issue 4, pp 525–542 | Cite as

Assessment of the climatic potential for tourism in Iran through biometeorology clustering

  • Gholamreza Roshan
  • Robabe Yousefi
  • Krzysztof Błażejczyk
Original Paper

Abstract

This study presents a spatiotemporal analysis of bioclimatic comfort conditions for Iran using mean daily meteorological data from 1995 to 2014, analyzed through Physiological Equivalent Temperature (PET) index and Universal Thermal Climate Index (UTCI) indices, and bioclimatic clustering. The results of this study demonstrate that due to the climate variability across Iran during the year, there is at any point in time a location with climatic condition suitable for tourism. Mean values demonstrate maxima in bioclimatic comfort indices for the country in late winter and spring and minima for summer. Seven statistically significant clusters in bioclimatic indices were identified. Comparing these with clustering performed on PET and UTCI, the maximum overlaps between the two indices. In the following, the outputs of this research showed that most appropriate bioclimatic clustering for Iran includes seven clusters. These clustering locations according to climatic suitability for tourism provide a valuable contribution to tourism management in the country, particularly through marketing destinations to maximize tourist flow.

Keywords

Tourism potential Clustering analysis Bioclimatic indices Iran 

References

  1. Akbarian SR, Ronizi GH, Roshan R, Negahban S (2016) Assessments of tourism climate opportunities and threats for villages located in the northern coasts of Iran. Int J Environ Res 10(4):601–612Google Scholar
  2. Amelung B, Viner D (2006) Mediterranean tourism: exploring the future with the tourism climatic index. Journal of Sustain Tour 14(4):349–366CrossRefGoogle Scholar
  3. Amelung B, Blazejczyk K, Matzarakis A (2007) Climate change and tourism—assessment and coping strategies, Meteorological Institute, University of Freiburg. D-79085 Freiburg, GermanyGoogle Scholar
  4. Amiranashvili A, Matzarakis A, Kartvelishvili L (2008) Tourism climate index in Tbilisi. Trans Georgian Inst Hydrometeorol 115:1–4Google Scholar
  5. Auliciems A, de Dear R (1997) Thermal adaptation and variable indoor climate control. In: Auliciems A (ed) Advances in bioclimatology—5. Human bioclimatology. Springer, Heidelberg, pp 61–86Google Scholar
  6. Agnew M.D, Palutikof J.P (2001) Climate impacts on the demand for tourism. In: International Society of Biometeorology Proceedings of the first international workshop on climate, tourism and recreation. Report of a workshop held at Porto Carras, Neos Marmaras, Halkidiki, Greece, 5–10 October 2001Google Scholar
  7. Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535CrossRefGoogle Scholar
  8. Blazejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y (2013) An introduction to the universal thermal climate index (UTCI). Geogr Pol 86(1):5–10CrossRefGoogle Scholar
  9. Błażejczyk K, Kuchcik M, Błażejczyk A, Milewski P, Szmyd J (2014) Assessment of urban thermal stress by UTCI—experimental and modelling studies: an example from Poland. Erde 145(1–2):16–33Google Scholar
  10. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeorol 56(3):481–494CrossRefGoogle Scholar
  11. Bröde P, Blazejczyk K, Fiala D, Havenith G, Holmer I, Jendritzky G, Kuklane K, Kampmann B (2013) The universal thermal climate index UTCI compared to ergonomics standards for assessing the thermal environment. Ind Health 51(1):16–24CrossRefGoogle Scholar
  12. Buratti C, Ricciardi P (2009) Adaptive analysis of thermal comfort in university classrooms: correlation between experimental data and mathematical models. Build Environ 44:674–687CrossRefGoogle Scholar
  13. Burt JE, O’Rourke PA, Terjung WH (1982) The relative influence of urban climates on outdoor human energy budgets and skin temperature 2. Man in an urban environment. Int J Biometeorol 26(1):25–35CrossRefGoogle Scholar
  14. Clarke JF, Bach W (1971) Comparison of the comfort conditions in different urban and suburban microenvironments. Int J Biometeorol 15(1):41–54CrossRefGoogle Scholar
  15. Bauche JP, Grigorieva EA, Matzarakis A (2013) Human-Biometeorological Assessment of Urban Structures in Extreme Climate Conditions: The Example of Birobidzhan, Russian Far East. Advances in Meteorology.  https://doi.org/10.1155/2013/749270
  16. Driscoll DM (1992) Thermal comfort indexes. Current uses and abuses. Nat. Weather Digest 17(4):33–38Google Scholar
  17. Dalman M, Salleh E (2011) Microclimate and thermal comfort of urban forms and canyons in traditional and modern residential fabrics in Bandar Abbas, Iran. Mod Appl Sci 5(2):43–56CrossRefGoogle Scholar
  18. Deb C, Ramachandraiah A (2010) Evaluation of thermal comfort in a rail terminal location in India. Build Environ 45:2571–2580CrossRefGoogle Scholar
  19. Delavar M, Moradifar A, Nikouseresht R (2012) Classification of tourism region in north area of Iran by using of TCI index: case study of Guilan province. Aust J Basic Appl Sci 6(7):384–396Google Scholar
  20. Endler C, Oehler K, Matzarakis A (2010) Vertical gradient of climate change and climate tourism conditions in the Black Forest. Int J Biometeorol 54:45–61Google Scholar
  21. Esmaili R, Fallah Ghalhari G (2014) An assessment of bioclimatic conditions for tourists: case study of Mashhad, Iran. Atmos Clim Sci 4:137–146Google Scholar
  22. Estrada F, Martinez-Arroyo A, Fernandez-Equiarte A, Luyando E, Gay C (2009) Defining climate zones in Mexico City using multivariate analysis. Atmosfera 22:175–193Google Scholar
  23. Everitt B, Landau S, Leese M (2001) Clustering analysis. Arnold, LondonGoogle Scholar
  24. Fanger PO (1972) Thermal comfort. McGraw-Hill, New YorkGoogle Scholar
  25. Farajzadeh H, Matzarakis A (2009) Quantification of climate for tourism in the northwest of Iran. Meteorol Appl 16:545–555CrossRefGoogle Scholar
  26. Farajzadeh H, Matzarakis A (2012) Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theor Appl Climatol 107:451–459CrossRefGoogle Scholar
  27. Farajzadeh H, Saligheh M, Alijani B, Matzarakis A (2015) Comparison of selected thermal indices in the northwest of Iran. Nat Environ Chang 1:61–80Google Scholar
  28. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159Google Scholar
  29. Fiala D, Lomas KJ, Stohrer M (2003) First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Transactions: Research Vol. 109, Part I: 179–186Google Scholar
  30. Fiala D, Havenith G, Broede P, Kampmann B, Jendritzky G (2012) UTCI-fiala, multinode model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441CrossRefGoogle Scholar
  31. Font X, Ahjem Tor E (1999) Searching for a balance in tourism development strategies. Int J Contemp 11(2/3):73–77Google Scholar
  32. Fovell RG, Fovell MC (1993) Climate zones of the conterminous United States defined using cluster analysis. J Clim 6:2103–2135CrossRefGoogle Scholar
  33. Gagge AP, Fobelets AP, Berglulg LG (1986) A standart predictive index of human response to the thermal environment. ASHRAE Trans 92(13):709–731Google Scholar
  34. Ghanian M, Ghoochani OM, Crotts JC (2014) An application of European performance satisfaction index towards rural tourism: the case of western Iran. Tour Manag Perspect 11:77–82CrossRefGoogle Scholar
  35. Givoni B (1976) Man, climate and architecture. 2nd edition. Applied Science Publishers, LondonGoogle Scholar
  36. Hartz DA, Brazel AJ, Golden JS (2013) A comparative climate analysis of heat-related emergency 911 dispatches: Chicago, Illinois, and Phoenix, Arizona USA 2003 to 2006. Int J Biometeorol 57(5):669–678CrossRefGoogle Scholar
  37. Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56(3):461–470CrossRefGoogle Scholar
  38. Hein L, Metzger MJ, Moreno A (2009) Potential impacts of climate change on tourism; a case study for Spain. Curr Opin Environ Sustain 1:170–178CrossRefGoogle Scholar
  39. Höppe PR (1993) Heat balance modelling. Experientia 49:741–746CrossRefGoogle Scholar
  40. Höppe PR (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75CrossRefGoogle Scholar
  41. Hydarei H, Alijanei B (1999) Iran climate classification using multivariate statistical techniques. Phys Geogr Res 37:57–74 (in Persian)Google Scholar
  42. Iran Statistic Center. (2010) A summary of internet user findings. Accessed 19 October 2012. Retrieved from http://www.amar.org.ir/Portals/0/Files/abstract/1389/n_IT_89.pdf
  43. Jendritzky G, Nübler GW (1981) A model analyzing the urban thermal environment in physiologically significant terms. Arch Meteorol Geophys Bioassess Ser B Theor Appl Climatol 29(4):313–326CrossRefGoogle Scholar
  44. Jardine N, Sibson R (1971) Mathematical taxonomy. Wiley, New YorkGoogle Scholar
  45. Jendritzky G, Maarouf A, Fiala D, Staiger H (2002) An update on the development of a universal thermal climate index. 15th Conf Biomet Aerobiol. and 16th ICB02, 27 Oct – 1 Nov 2002, Kansas City, AMS: 129–133Google Scholar
  46. Landsberg HE (1972) The assessment of human bioclimate, a limited review of physical parameters. World Meteorological Organization, Technical Note No 123 WMO-No 331 GenevaGoogle Scholar
  47. Lin T, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290CrossRefGoogle Scholar
  48. Mansouri Daneshvar MR, Bagherzadeh A, Tavousi T (2013) Assessment of bioclimatic comfort conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran. Central European J Geosci 5: 53–60Google Scholar
  49. Masoudian SA, Ebrahimi R, Mohammadei M (2014a) Spatiotemporal zoning, the annual and seasonal cooling and heating need in Iran. Sci Res Quart Geogr Data (SEPEHR) 23:33e46 (In Persian)Google Scholar
  50. Masoudian SA, Ebrahimi R, Yarahmadei E (2014b) Spatiotemporal analysis of the monthly procedure of degree-day heating in Iran territory. J Geogr Reg Dev Res 23:18e27 (In Persian)Google Scholar
  51. Mathai A, Rabadi N, Grosland N (2004) Digital human modeling and virtual reality for FCS. Technical report no VSR-04-02 University of Iota USAGoogle Scholar
  52. Matzarakis A, Mayer H (1996) Another kind of environmental stress: Thermal stress. WHO Colloborating centre for air quality management and air pollution control. NEWSLETTERS 18: 7–10Google Scholar
  53. Matzarakis A, and Mayer H, (1997) Heat stress in Greece, Int J Biometeorol. 41: 34–9Google Scholar
  54. Matzarakis A (2001), Climate and Bioclimatic Information for the Tourism in Greece. In: Proceedings of the 1st International workshop on climate, tourism and recreation. International Society of Biometeorology, Commission on Climate, Tourism and Recreation. Report of a Workshop Held at Porto Carras, Neos Marmaras, Halkidiki, Greece, 5–10 October 2001, pp. 171–184Google Scholar
  55. Matzarakis A (2007a) Assessment method for climate and tourism based on daily data. In: Matzarakis A., de Freitas C.R. and Scott D. (eds.) Developments in tourism climatology. Meteorological Institute, University of Freiburg, pp. 52–58Google Scholar
  56. Matzarakis A (2007b) Entwicklungeiner Bewertungsmethodik zur Integration von Wetter- und Klimabedingungenim Tourismus. Ber Met Inst Univ Freiburg 16:73–79Google Scholar
  57. Matzarakis A, Endler C (2010) Adaptation of thermal bioclimate under climate change conditions—the example of physiologically equivalent temperature in Freiburg, Germany. Int J Biometeorol 54:479–483CrossRefGoogle Scholar
  58. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49CrossRefGoogle Scholar
  59. Mieczkowski Z (1985) The tourism climatic index: a method of evaluating world climates for tourism. Can Geogr 29(3):220–233CrossRefGoogle Scholar
  60. Mokhtari M, Anvari M (2015) A comparative study of tourism comforting climate in Iran: case study in the Markazi province and southern Kharasan province of Iran with TCI model in GIS environment. J Novel Appl Sci 4–2:151–156Google Scholar
  61. Morgan DL, Baskett RL (1974) Comfort of man in the city. An energy balance model of man-environment coupling. Int J Biometeorol 18(3):184–198CrossRefGoogle Scholar
  62. Novák M (2013) Use of the UTCI in the Czech Republic. Geogr Pol 86(1):21–28CrossRefGoogle Scholar
  63. Olgyay V (1953) Application of climatic data to house design. U.S. Housing and Home Finance Agency, Washington, DC. vol 2Google Scholar
  64. Parsons KC (1993) Human thermal environments. Taylor & Francis, LondonCrossRefGoogle Scholar
  65. Parsons KC (2003) Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance. Taylor & Francis, LondonGoogle Scholar
  66. Ping Lin T, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and eastern China. Tour Manag 32:492–500CrossRefGoogle Scholar
  67. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRefGoogle Scholar
  68. Ramazanipour M, Behzadmoghaddam E (2013) Analysis of tourism climate index of Chaloos City. Int J Humanit Manag Sci (IJHMS) 1(5):290–292Google Scholar
  69. Ramezani Gourabi B, Forough P (2010) Climatic potential of sport tourism in Anzali-Rezvanshahr coastal belt, south-west of Caspian Sea, Iran. Caspian J Environ Sci 8(1):73–78Google Scholar
  70. Roshan GR, Yousefi R, Fitchett JM (2016a) Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability. Int J Biometeorol 60(1):33–52CrossRefGoogle Scholar
  71. Roshan GR, Yousefi R, Kovács A, Matzarakis A (2016b) A comprehensive analysis of physiologically equivalent temperature changes of Iranian selected stations for the last half century. Theor Appl Climatol.  https://doi.org/10.1007/s00704-016-1950
  72. Rudel E, Matzarakis A, Koch E (2007) Summer tourism in Austria and climate change In: Oxley L, and Kulasiri D (eds) MODSIM. International Congress on Modelling and Simulation. Society of Australia and New Zealand, December 2007 pp 1934–1939 ISBN: 978-0-9758400-4-7Google Scholar
  73. Safaeipoor M, Shabankari M, Taghavi T (2013) The effective bioclimatic indices on evaluating human comfort: a case study of Shiraz City. J Geograph Environ Plann 50(2):23–34Google Scholar
  74. Steadman RG (1979) The assessment of sultriness. Part I: A temperature humidity index based on human physiology and clothing science. J Applied Meteorol 18:861–873CrossRefGoogle Scholar
  75. Salavati S, Hashim NH (2015) Website adoption and performance by Iranian hotels. Tourism Management 46:367–374CrossRefGoogle Scholar
  76. Taffé P (1997) A qualitative response model of thermal comfort. Build Environ 32:115–121CrossRefGoogle Scholar
  77. Terjung WH (1968) World patterns of the monthly comfort index. Int J Biometeorol 12(2):119–141CrossRefGoogle Scholar
  78. Terjung WH (1970) Urban energy balance climatology: a preliminary investigation of the city-man system in downtown Los Angeles. Geogr Rev 60(1):31–53CrossRefGoogle Scholar
  79. Terjung WH, O’Rourke PA (1983) Energy budget changes caused by varying solar angles, cloud scenarios, and air temperatures in contrasting landscapes. Int J Biometeorol 27(1):3–16CrossRefGoogle Scholar
  80. Thomson MC, Garcia-Herrera R, Beniston M (2008) Seasonal forecasts, climatic change and human health: health and climate. Springer Science + Business Media B.V. 232 pagesGoogle Scholar
  81. Tuller SE (1975) The energy budget of man: variations with aspect in a downtown urban environment. Int J Biometeorology 19(1):2–13CrossRefGoogle Scholar
  82. The World Economy Newspaper. (2017)) Fourth rank of Iran in tourism growth, Tehran, Iran. http://donya-e-eqtesad.com/news/878201
  83. Unal Y, Kindap T, Karaca M (2003) Redefining the climate zones of Turkey using cluster analysis. Int J Climatol 23:1045–1055CrossRefGoogle Scholar
  84. United Nations World Tourism Organization (UNWTO). (2013). Tourism highlights, 2013 edition. Accessed 1 August 2013. Retrieved from http://mkt.unwto.org/en/ publication/unwto-tourism-highlights-2013-edition
  85. Urban A, and Kyselý J (2014) Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the czech republic. Int. J Environ Res. Public Health 2014(11):952–967Google Scholar
  86. Raziei T (2017) A precipitation regionalization and regime for Iran based on multivariate analysis. Theor Appl Climatol.  https://doi.org/10.1007/s00704-017-2065-1
  87. Weihs P, Staiger H, Tinz B, Batchvarova E, Rieder H, Vuilleumier L, Maturilli M, Jendritzky G (2012) The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol 56(3):537–555CrossRefGoogle Scholar
  88. Wenzel HG, Piekarski C (1982) Klima und Arbeit. Hrsg., Bayerisches Staatsministerium für Arbeit und Sozialordnung, München, 200 pp.Google Scholar
  89. Yazdanpanah H, Barghi H, Esmaili A (2016) Effect of climate change impact on tourism: a study on climate comfort of Zayandehroud River route from 2014 to 2039. Tour Manag Perspect 17:82–89CrossRefGoogle Scholar
  90. Xu R, Wunsch D (2009) Clustering. Wiley, Hoboken. 368pagGoogle Scholar
  91. Yee YY (2005) Human thermal climates in China. Phys Geogr 26:163–176CrossRefGoogle Scholar
  92. Zengin M, Kopar I, Karhanfaris F (2009) Determination of bioclimatic comfort in Erzurm-Rize expressway corridor using GIS. Build Environ 45(1):158–164CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  • Gholamreza Roshan
    • 1
  • Robabe Yousefi
    • 2
  • Krzysztof Błażejczyk
    • 3
  1. 1.Department of GeographyGolestan UniversityGorganIran
  2. 2.Institute of Geographical Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  3. 3.Institute of Geography and Spatial OrganizationPolish Academy of SciencesWarsawPoland

Personalised recommendations