Heat stress mortality and desired adaptation responses of healthcare system in Poland

  • Anna Błażejczyk
  • Krzysztof Błażejczyk
  • Jarosław Baranowski
  • Magdalena Kuchcik
Special Issue on Trans-disciplinary approaches to climate change

Abstract

Heat stress is one of the environmental factors influencing the health of individuals and the wider population. There is a large body of research to document significant increases in mortality and morbidity during heat waves all over the world. This paper presents key results of research dealing with heat-related mortality (HRM) in various cities in Poland which cover about 25% of the country’s population. Daily mortality and weather data reports for the years 1991–2000 were used. The intensity of heat stress was assessed by the universal thermal climate index (UTCI). The research considers also the projections of future bioclimate to the end of twenty-first century. Brain storming discussions were applied to find necessary adaptation strategies of healthcare system (HCS) in Poland, to minimise negative effects of heat stress. In general, in days with strong and very strong heat stress, ones must expect increase in mortality (in relation to no thermal stress days) of 12 and 47%, respectively. Because of projected rise in global temperature and heat stress frequency, we must expect significant increase in HRM to the end of twenty-first century of even 165% in comparison to present days. The results of research show necessity of urgent implementation of adaptation strategies to heat in HCS.

Keywords

Heat stress mortality UTCI Healthcare system Bioclimate change Adaptation Poland 

References

  1. Alcoforado MJ, Marques D, Garcia RAC, Canario P, Nunes MF, Nogueira H, Cravosa A (2015) Weather and climate versus mortality in Lisbon (Portugal) since the 19th century. Appl Geogr 57:133e141. https://doi.org/10.1016/j.apgeog.2014.12.017 CrossRefGoogle Scholar
  2. Arbuthnott K, Hajat S, Heaviside C, Vardoulakis S (2016) Changes in population susceptibility to heat and cold over time: assessing adaptation to climate change. Environ Health 2016 15(Suppl 1):33. https://doi.org/10.1186/s12940-016-0102-71,2 Google Scholar
  3. Åström C, Orru H, Rocklöv J, Strandberg G, Ebi KL, Forsberg B (2013) Heat-related respiratory hospital admissions in Europe in a changing climate: a health impact assessment. BMJ Open 2013 3:e001842. https://doi.org/10.1136/bmjopen-2012-001842 Google Scholar
  4. Åström C, Ebi KL, Langner J, Forsberg B (2015) Developing a heatwave early warning system for Sweden: evaluating sensitivity of different epidemiological modelling approaches to forecast temperatures. Int J Environ Res Public Health 12:254–267. https://doi.org/10.3390/ijerph120100254 CrossRefGoogle Scholar
  5. Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, Anderson H, Bisanti L, Danova J (2008) Heat effect on mortality in 15 European cities. Epidemiology 19:711–719CrossRefGoogle Scholar
  6. Baccini M, Kosatsky T, Analitis A, Anderson HR, d'Ovidio M, Menne B, Michelozzi P, Biggeri A, Accetta G, de Sario M, d’Ippoliti D, Marino C, Katsouyanni K, Ballester F, Bisanti L, Cadum E, Forsberg B, Forastiere F, Goodman PG, Hojs A, Kirchmayer U, Medina S, Paldy A, Schindler C, Sunyer J, Perucci CA, McGregor G, Kassomenos P, Atkinson R, Medina S, Clancy L, Pekkanen J, Woityniak B, Jolliffe I, Jendritzky G, Blazejczyk K, Huth R, Cegnar T, Iniguez C, Monceau G, Kalkstein LS (2011) Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. J Epidemiol Comm Health 65(1):64–70. https://doi.org/10.1136/jech.2008.085639 CrossRefGoogle Scholar
  7. Błażejczyk K (2006) Climate and bioclimate of Poland. [in:] M. Degórski (ed), Natural and human environment of Poland. A geographical overview. Polish Academy of Sciences Institute of Geography and Spatial Organization, Polish Geographical Society, Warsaw: 31–48Google Scholar
  8. Błażejczyk K, Matzarakis A (2007) Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geogr Pol 80(1):63–82Google Scholar
  9. Błażejczyk K, McGregor G (2008) Mortality in European cities and its relations to biothermal conditions, [in:] K Klysik, J Wibig, K Fortuniak (eds), Klimat i bioklimat miast, Wydawnictwo Uniwersytetu Łódzkiego:313–324Google Scholar
  10. Błażejczyk K, Baranowski J, Pisarczyk S, Szpot M (2000) Influence of the human heat balance on respiratory and circulatory diseases. [in:] de Dear RJ, Kalma JD, Oke TR, Auliciems A (eds.) Biometeorology and urban climatology at the turn of millennium, Selected papers from the Conference ICB-ICUC’99 (Sydney, 8–12 Nov. 1999), WMO, Genewa: 107–111Google Scholar
  11. Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535. https://doi.org/10.1007/s00484-011-0453-2 CrossRefGoogle Scholar
  12. Błażejczyk K, Idzikowska D, Błażejczyk A (2013a) Forecast changes for heat and cold stress in Warsaw in the 21st century, and their possible influence on mortality risk. Papers on Global Change 20:47–62Google Scholar
  13. Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013b) An introduction to the Universal Thermal Climate Index (UTCI). Geogr Pol 86(1):5–10CrossRefGoogle Scholar
  14. Błażejczyk K, Kuchcik M, Błażejczyk A, Milewski P, Szmyd J (2014) Assessment of urban thermal stress by UTCI—experimental and modelling studies: example from Poland. Die Erde, Vol. 145 1–2/2014: 16–33, 10.12854/erde-145-3
  15. Błażejczyk K, Baranowski J, Błażejczyk A (2015a) Adaptacja systemu ochrony zdrowia do zmian klimatu (Adaptation of healthcare system to climate change). [in]: H Lorenc, Z. Ustrnul.(eds.). Klimat a społeczeństwo i gospodarka (Climate vs society and economy). Instytut Meteorologii i Gospodarki Wodnej-Państwowy Instytut Badawczy, Monografie, Warszawa: 175–190Google Scholar
  16. Błażejczyk K, Kazandijev V, Degórski M, Dimitriev P (2015b) Assessment of occupational heat stress risk among agriculture workers in Poland and Bulgaria. Europa XXI 29:59–71CrossRefGoogle Scholar
  17. Bouchama A, Knochel J (2002) Heat stroke. New Engl J Med 346:1978–1988CrossRefGoogle Scholar
  18. Bowen KJ, Ebi KL (2015) Governing the health risks of climate change: towards multi-sector responses. Curr Opin Environ Sustain 12:80–85. https://doi.org/10.1016/j.cosust.2014.12.001 CrossRefGoogle Scholar
  19. Braks M, van Ginkel R, Wint W, Sedda L, Sprong H (2014) Climate change and public health policy: translating the science. Int J Environ Res Public Health 11:13–29. https://doi.org/10.3390/ijerph110100013 CrossRefGoogle Scholar
  20. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56(3):481–494. https://doi.org/10.1007/s00484-011-0454-1 CrossRefGoogle Scholar
  21. Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W (2015) Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): evidence from Lisbon. Portugal Environ Health Perspect. https://doi.org/10.1289/ehp.1409529
  22. Chan NY, Stacey MT, Smith AE, Ebi KL, Wilson TF (2001) An empirical mechanistic framework for heat-related illness. Clim Res 16:133–143CrossRefGoogle Scholar
  23. Cheung CSC, Hart MA (2014) Climate change and thermal comfort in Hong Kong. Int J Biometeorol 58:137–148. https://doi.org/10.1007/s00484-012-0608-9 CrossRefGoogle Scholar
  24. Dawson J, Weir C, Wright F, Bryden C, Aslanysan S, Lees K (2008) Associations between meteorological variables and acute stroke hospital admissions in the west of Scotland. Acta Neurol Scand 117:85–89Google Scholar
  25. Demographic Yearbook of Poland, 2000, Central Statistical Office, Warszawa 2001Google Scholar
  26. Díaz J (2014) Heat waves’ influence on health: some uncertainties about their impact. J Earth Sci Clim Change 5:3. https://doi.org/10.4172/2157-7617.1000186 Google Scholar
  27. Diaz J, Linares C, Tobias A (2006) Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45–64 age-group. Int J Biometeorol 50:342–348CrossRefGoogle Scholar
  28. Díaz J, Carmona R, Mirón IJ, Ortiz C, León I, Linares C (2015) Geographical variation in relative risks associated with heat: update of Spain’s Heat Wave Prevention Plan. Environ Int 85:273–283. https://doi.org/10.1016/j.envint.2015.09.022 CrossRefGoogle Scholar
  29. Ebi KL (2008) Healthy people 2100: modelling population health impacts of climate change. Clim Chang 88:5–19. doi:https://doi.org/10.1007/s10584-006-9233-0 CrossRefGoogle Scholar
  30. Ebi K, Exuzides K, Lau E, Kelsh M, Barnston A (2004) Weather changes associated with hospitalization for cardiovascular diseases and stroke in California, 1983–1998. Int J Biometeorol 49:48–58CrossRefGoogle Scholar
  31. Epstein Y, Moran DS (2006) Thermal comfort and heat stress indices. Ind Health 44:388–398CrossRefGoogle Scholar
  32. Ferrari R, Ford I, Greenlaw N, Tardif J-C, Tendera M, Abergel H, Fox K, Hu D, Shalnova S, Steg Ph G(2015) Geographical variations in the prevalence and management of cardiovascular risk factors in outpatients with CAD: Data from the contemporary CLARIFY registry. Eur J Prev Cardiol 22(8):1056–1065. https://doi.org/10.1177/2047487314547652
  33. Flynn A, McGreevy C, Mulkerrin E (2005) Why do older patients die in a heatwave? Q J Med 98:227–229CrossRefGoogle Scholar
  34. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Env Health 80:16–24CrossRefGoogle Scholar
  35. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, de Sario M, Bell ML, Guo Y-LL, Wu C-fu, Kan H, Yi S-M, de Sousa Zanotti Stagliorio Coelho M, Saldiva PHN, Honda Y, Kim H, Armstrong B (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. www.thelancet.com Published online May 21, 2015; https://doi.org/10.1016/S0140-6736(14)62114-0
  36. Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud B (2009a) Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim Chang 92:299–341CrossRefGoogle Scholar
  37. Gosling SN, McGregor GR, Lowe JA (2009b) Climate change and heat-related mortality in six cities. Part 2: climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int J Biometeorol 53:31–51CrossRefGoogle Scholar
  38. Gosling SN, Bryce EK, Grady Dixon P, Gabriel KMA, Gosling EY, Hanes JM, Hondula DM, Liang L, Ayleen P, Mac Lean B, Muthers S, Tavares Nascimento S, Petralli M, Vanos JK, Wanka ER (2014) A glossary for biometeorology. Int J Biometeorol 58(2):277–308CrossRefGoogle Scholar
  39. Green R, Basu R, Malig B, Broadwin R, Kim J, Ostro B (2009) The effect of temperature on hospital admission in nine California counties. Int J Public Health 55:113–121CrossRefGoogle Scholar
  40. Green JS, Kalkstein LS, Kim KR, Choi Y-J, Lee D-G (2016) The application of the European heat wave of 2003 to Korean cities to analyze impacts on heat-related mortality. Int J Biometeorol 60:231–243CrossRefGoogle Scholar
  41. Grillakis MG, Koutroulis AG, Tsanis JK (2016) The 2°C global warming effect on summer European tourism through different indices. Int J Biometeorol 60:1205–1215. https://doi.org/10.1007/s00484-015-1115-6 CrossRefGoogle Scholar
  42. Improving public health responses to extreme weather/heat-waves – EuroHEAT. Technical report (2009) WHO Regional Office for Europe, Copenhagen, DenmarkGoogle Scholar
  43. Jendritzky G, Tinz B (2009, 2009) The thermal environment of the human being on the global scale. Glob Health Action. https://doi.org/10.3402/gha.v2i0.2005
  44. Kalkstein LS (1998) Climate and human mortality: relationships and mitigating measures. Advances in Bioclimatology 5:161–177CrossRefGoogle Scholar
  45. Kampmann B, Bröde P, Fiala D (2012) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J Biometeorol 56:505–513CrossRefGoogle Scholar
  46. Kjellstrom T, Freyberg Ch, Lemke B, Otto M, Briggs D (2016) Estimating population heat exposure and impact on working people in conjunction with climate change. Int J Biometeorol, this issueGoogle Scholar
  47. Koken P, Piver W, Ye F, Elixhauser A, Olsen L, Portier C (2003) Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ Health Perspect 111:1312–1317CrossRefGoogle Scholar
  48. Köppe C, Kovats S, Jendritzky G, Menne B (2004) Heat-waves: risks and responses. Health and Global Environmental Change Series, No. 2, WHO Europe, Copenhagen, DenmarkGoogle Scholar
  49. Kovats R, Hajat S, Wilkinson P (2004) Contrasting pattern of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occup Environm Med 61:893–898CrossRefGoogle Scholar
  50. Kozłowska-Szczęsna T, Krawczyk B, Kuchcik M (2004) Wpływ środowiska atmosferycznego na zdrowie i samopoczucie człowieka (Influence of the atmosphere on human health and wellbeing). IGiPZ PAN, Monografie 4, WarszawaGoogle Scholar
  51. Kuchcik M, Degórski M (2009) Heat- and cold-related mortality in the north-east of Poland as an example of the socio-economic effects of extreme hydrometeorological events in the Polish Lowland. Geogr Pol 82(1):69–78CrossRefGoogle Scholar
  52. Kuszewski K, Gericke C (2005) Health systems in transition: Poland. Copenhagen, WHO Regional Office for Europe on behalf of the European Observatory on Health Systems and Policies, Vol. 7 No. 5Google Scholar
  53. Laschewski G, Jendritzky G (2002) Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Clim Res 21:91–103CrossRefGoogle Scholar
  54. Michelozzi P, Accetta G, De Sario M, D’Ippoliti D, Marino C, Baccini M, Biggeri A, Anderson HR, Katsouyanni K, Ballester F, Bisanti L, Cadum E, Forsberg B, Forastiere F, Goodman PG, Hojs A, Kirchmayer U, Medina S, Paldy A, Schindler C, Sunyer J, Perucci CA, McGregor G, Menne B, Kosatsky T, Analitis A, Kassomenos P, Atkinson R, Clancy L, Goodman PG, Pekkanen J, Woityniak B, Jolliffe I, Jendritzky G, Blazejczyk K, Huth R, Cegnar T, Iniguez C, Monceau G, Kalkstein LS (2009) High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am J Resp Critl Care Med 179:383–389CrossRefGoogle Scholar
  55. Muthers S, Matzarakis A, Koch E (2010a) Climate change and mortality in Vienna—a human-biometeorological analysis based on regional climate modeling. Int J Environ Res Public Health 7:2965–2977. https://doi.org/10.3390/ijerph7072965 CrossRefGoogle Scholar
  56. Muthers S, Matzarakis A, Koch E (2010b) Summer climate and mortality in Vienna—a human-biometeorological approach of heat-related mortality during the heat waves in 2003. Wien Klin Wochenschr 122:525–531. https://doi.org/10.1007/s00508-010-1424-z CrossRefGoogle Scholar
  57. Nastos PT, Matzarakis A (2012) The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor Appl Climatol 108:591–599. https://doi.org/10.1007/s00704-011-0555-0 CrossRefGoogle Scholar
  58. Naughton M, Henderson A, Mirabelli M, Kaiser R, Wilhelm J, Kieszak S, Rubin C, McGeehin M (2002) Heat-related mortality during 1999 heat wave in Chicago. Am J Prev Med 22:221–227CrossRefGoogle Scholar
  59. Nowosad M, Rodzik B, Wereski S, Dobek M (2013) The UTCI index in Lesko and Lublin and its circulation determinants. Geogr Pol 86(1):29–36. https://doi.org/10.7163/GPol.2013.4 CrossRefGoogle Scholar
  60. Pappenberger F, Jendritzky G, Staiger H, Dutra E, di Giuseppe F, Richardson DS, Cloke HL (2014) Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int J Biometeorol. https://doi.org/10.1007/s00484-014-0843-3
  61. Pezzoli A, Santos Dávila JL, d’Elia E (2016) Climate and human health: relations, projections, and future implementations. Climate 2016(4):18. https://doi.org/10.3390/cli4020018 CrossRefGoogle Scholar
  62. Ren C, Wiliams G, Tong S (2006) Does particulate matter modify the association between temperature and cardiorespiratory diseases? Environ Health Perspect 114:1690–1696Google Scholar
  63. Rocklöv J, Forsberg B, Ebi K, Bellander T (2014) Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden. Glob Health Action 7:22737CrossRefGoogle Scholar
  64. Saldiva P, Pope C, Schwartz J, Dockery D, Lichtenfels A, Salge J, Barone I, Bohm G (1995) Air pollution and mortality in elderly people: a time-series study in Sao Paulo, Brazil. Arch Environ Health 50:159–163CrossRefGoogle Scholar
  65. Strategiczny plan adaptacji dla sektorów i obszarów wrażliwych na zmiany klimatu do roku 2020 z perspektywą do roku 2030 (2013) Ministerstwo Środowiska, [Strategic plan of adaptation of vulnerable sectors of economy to climate change to the year 2020 with perspective to 2030. Ministry of Environment], Warszawa; https://www.mos.gov.pl/fileadmin/user_upload/SPA_2020.pdf
  66. Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ, Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol 51:193–200CrossRefGoogle Scholar
  67. Task Group on Climate Change, Heat and Occupational Health (2012) Indicators for climate change impact assessment of occupational heat exposure and effects on health and productivity. International Commission on Occupational Health, draft of ReportGoogle Scholar
  68. Thorsson S, Lindberg F, Björklund J, Holmer B, Rayner D (2011) Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int J Climatol 31:324–335. https://doi.org/10.1002/joc.2231 CrossRefGoogle Scholar
  69. Thorsson S, Rocklöv J, Konarska J, Lindberg F, Holmer B, Dousset B, Rayner D (2014) Mean radiant temperature—a predictor of heat related mortality. Urban Climate. https://doi.org/10.1016/j.uclim.2014.01.004
  70. Tobías A, Armstrong B, Gasparrini A, Diaz J (2014) Effects of high summer temperatures on mortality in 50 Spanish cities. Environ Health 13:48 http://www.ehjournal.net/content/13/1/48 CrossRefGoogle Scholar
  71. Tong S, Ren C, Becker N (2010) Excess deaths during the 2004 heat wave in Brisbane, Australia. Int J Biometeorol 54:393–400CrossRefGoogle Scholar
  72. Urban A, Kyselý J (2014) Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int J Environ Res Public Health 11:952–967. https://doi.org/10.3390/ijerph110100952 CrossRefGoogle Scholar
  73. Urban A, Davídkovová H, Kyselý J (2013) Heat- and cold-stress effects on cardiovascular mortality and morbidity among urban and rural populations in the Czech Republic. Int J Biometeorol. https://doi.org/10.1007/s00484-013-0693-4
  74. Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, Cochet C, Riberon J, Siberan I, Declercq B, Ledrans M (2006) August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur J Pub Health 16:583–591CrossRefGoogle Scholar
  75. White-Newsome JL, Ekwurzel B, Baer-Schultz M, Ebi KL, O’Neill MS, Anderson GB (2014) Survey of county-level heat preparedness and response to the 2011 summer heat in 30 U.S. states. Environm Health Perspectives, 122, 6, June 2014; https://doi.org/10.1289/ehp.1306693
  76. Więcław M (2004) Masy powietrza nad Polską i ich wpływ na typy pogody [Air masses over Poland and their impact on weather types]. Akademia Bydgoska im. Kazimierza Wielkiego, BydgoszczGoogle Scholar
  77. Yaron M, Niermeyer S (2004) Clinical description of heat illness in children, Melbourne, Australia—a commentary. Wild Environ Med 15:291–292CrossRefGoogle Scholar
  78. Ye F, Piver W, Ando M, Portier C (2001) Effect of temperature and air pollutants on cardiovascular and respiratory diseases for males and females older than 65 years of age in Tokyo, July and August 1980–1995. Environm Health Persp 109:355–359CrossRefGoogle Scholar
  79. Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S (2011) Ambient temperature and morbidity: a review of epidemiological evidence. Environm Health Perspective Online 8 August 2011:pp. 42Google Scholar
  80. Zaninovic K, Matzarakis A (2014) Impact of heat waves on mortality in Croatia. Int J Biometeorol 58:1135–1145. https://doi.org/10.1007/s00484-013-0706-3 CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  • Anna Błażejczyk
    • 1
  • Krzysztof Błażejczyk
    • 2
  • Jarosław Baranowski
    • 2
  • Magdalena Kuchcik
    • 2
  1. 1.Bioklimatologia, Laboratory of Bioclimatology and Environmental ErgonomicsWarsawPoland
  2. 2.Institute of Geography and Spatial Organization, Polish Academy of SciencesWarsawPoland

Personalised recommendations