The effects of hot nights on mortality in Barcelona, Spain

Original Paper

Abstract

Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1–2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6–1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5–8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3–13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.

Keywords

Heat Mortality Tropical night Hot night Effects Human health Climate change 

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05,109Google Scholar
  2. Alexander L, Tapper N, Zhang X, Fowler HJ, Tebaldi C, Lynch A (2009) Climate extremes: progress and future directions. Int J Climatol 29(3):317–319CrossRefGoogle Scholar
  3. Allen M, Sheridan S (2015) Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model. Int J Biometeorol. https://doi.org/10.1007/s00484-015-1117-4
  4. Andrade H, Alcoforado MJ (2008) Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night. Theor Appl Climatol 92:225–237CrossRefGoogle Scholar
  5. Aström C, Orru H, Rocklöv J, Strandberg G, Ebi K, Forsberg B (2013) Heat-related respiratory hospital admissions in Europe in a changing climate: a health impact assessment. BMJ Open 3:e001,842. https://doi.org/10.1136/bmjopen-2012-001842 CrossRefGoogle Scholar
  6. Basagaña X, Sartini C, Barrera-Gómez J, Dadvand P, Cunillera J, Ostro B, Sunyer J, Medina-Ramón M (2011) Heat waves and cause-specific mortality at all ages. Epidemiology 22:765–772CrossRefGoogle Scholar
  7. Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B (2013) Time series regression studies in environmental epidemiology. Int J Epidemiol 42:1187–1195CrossRefGoogle Scholar
  8. Bobb JF, Peng RD, Bell ML, Dominici F (2014) Heat-related mortality and adaptation to heat in the United States. Environ Health Perspect 122:811–816Google Scholar
  9. Buguet A (2007) Sleep under extreme environments: Effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J Neurol Sci 262:145–152CrossRefGoogle Scholar
  10. Buuren S, Groothuis-Oudshoorn K (2011) Mice: multivariate imputation by chained equations in R. J Stat Softw 45(3)Google Scholar
  11. Cappuccio FP, Cooper D, D’elia L, Strazzullo P, Miller MA (2011) Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J 32:1484–1492CrossRefGoogle Scholar
  12. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496Google Scholar
  13. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8:034,018CrossRefGoogle Scholar
  14. Cuinica LG, Cruz A, Abreu I, Esteves da Silva JCG (2015) Effects of atmospheric pollutants (CO, O3, SO2) on the allergenicity of Betula pendula, Ostrya carpinifolia, and Carpinus betulus pollen. Int J Environ Health Res 25(3):312–321CrossRefGoogle Scholar
  15. Dapi LN, Joacim Rocklöv J, Nguefack-Tsague G, Tetanye E, Kjellstrom T (2010) Heat impact on schoolchildren in Cameroon, Africa: potential health threat from climate change. Global Health Action 3(1)Google Scholar
  16. Davis R, Hondula D, Patel A (2016) Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795–804Google Scholar
  17. Díaz J, Carmona R, Miron IJ, Ortiz C, Leon I, Linares C (2015) Geographical variation in relative risks associated with heat: update of Spain’s heat wave prevention plan. Environ Int 85:273–283CrossRefGoogle Scholar
  18. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M, Caesar J, Hewitson B, Jack C, Klein Tank AMG, Kruger AC, Marengo J, Peterson TC, Renom M, Oria Rojas C, Rusticucci M, Salinger J, Elrayah AS, Sekele SS, Srivastava AK, Trewin B, Villarroel C, Vincent LA, Zhai P, Zhang X, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century. J Geophys Res Atmos 118:1–16CrossRefGoogle Scholar
  19. EEA (2012) Urban adaptation to climate change in Europe: challenges and opportunities for cities together with supportive national and European policies. Tech rep. Copenhagen, European Environment AgencyGoogle Scholar
  20. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403CrossRefGoogle Scholar
  21. Fujii H, Fukuda S, Narumi D, Ihara T, Watanabe Y (2015) Fatigue and sleep under large summer temperature differences. Environ Res 138:17–21CrossRefGoogle Scholar
  22. Gasparrini A (2011) Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 43(8):1–20CrossRefGoogle Scholar
  23. Gasparrini A (2014) Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med 33:881–889CrossRefGoogle Scholar
  24. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, De Sario M, Bell ML, Guo YLL, Wu C, Kan H, Yi SM, Coelho M, Saldiva P, Honda Y, Kim H, Armstrong B (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375CrossRefGoogle Scholar
  25. Gronlund CJ, Zanobetti A, Schwartz JD, Wellenius GA, ONeill MS (2014) Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environ Health Perspect 122:1187–1192Google Scholar
  26. Guo Y, Barnett A, Pan X, Yu W, Tong S (2011) The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag non-linear model. Environ Health Perspect 119:1719–1725CrossRefGoogle Scholar
  27. Hajat S, Kosatky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64:753–760CrossRefGoogle Scholar
  28. Hanna EG, Tait PW (2015) Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int J Environ Res Public Health 12:8034–8074. https://doi.org/10.3390/ijerph120708034 CrossRefGoogle Scholar
  29. Haskella E, Palcaa J, Walkera J, Bergera R, Hellera H (1981) The effects of high and low ambient temperatures on human sleep stages. Electroencephalogr Clin Neurophysiol 51:494–501CrossRefGoogle Scholar
  30. Hastie T, Tibshirani R (1990) A generalized additive models. Monographson statistics & applied probability, vol 43. Chapman&Hall/CRCGoogle Scholar
  31. Höppe P, Martinac I (1998) Indoor climate and air quality. review of current and future topics in the field of ISB study group 10. Int J Biometeorol 42:1–7CrossRefGoogle Scholar
  32. IPCC (2014) Impacts, adaptation and vulnerability. Tech. rep., Working Group II Contribution to AR5Google Scholar
  33. Joshi SS, Lesser TJ, Olsen JW, BF O’Hara (2016) The importance of temperature and thermoregulation for optimal human sleep. Energy Build 131:153–157CrossRefGoogle Scholar
  34. Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S, Giraudet E, Beaudeau P (2012) The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ Health Perspect 120:254–259CrossRefGoogle Scholar
  35. Lavigne E, Gasparrini A, Wang X, Chen H, Yagouti A, Fleury M, Cakmak S (2014) Extreme ambient temperatures and cardiorespiratory emergency room visits: assessing risk by comorbid health conditions in a time series study. Environ Health 13(5). https://doi.org/10.1186/1476-069X-13-5
  36. Lim YH, Hong YC, Kim H (2012) Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea. Sci Total Environ 417-418:55–60CrossRefGoogle Scholar
  37. Lin H, Zhang Y, Xu Y, Xu X, Liu T, Luo Y, Xiao J, Wu W, Ma W (2013) Temperature changes between neighboring days and mortality in summer: a distributed lag non-linear time series analysis. PLOS 6:e66,403. https://doi.org/10.1371/journal.pone.0066403 CrossRefGoogle Scholar
  38. Luo Y, Zhang Y, Liu T, Rutherford S, Xu Y, Xu X, Wu W, Xiao J, Zeng W, Chu C, Ma W (2013) Lagged effect of diurnal temperature range on mortality in a subtropical megacity of China. PLOS ONE 8(2):e55,280CrossRefGoogle Scholar
  39. Martin-Vide J, Montlleó M, Sanromá I (2016) Villes et changement climatique. La ville en train de se faire / Cities and climate change. Urban heat islands. Parenthè,ses, chap Leffet îlot de chaleur à Barcelone / Barcelona: urban heat islands, pp 38–52Google Scholar
  40. Miron IJ, Montero JC, Criado-Alvarez JJ, Linares C, Díaz J (2012) Intense cold and mortality in Castile-La Mancha (Spain): study of mortality trigger thresholds from 1975 to 2003. Int J Biometeorol 56:145–152CrossRefGoogle Scholar
  41. Moreno-García M (1994) Intensity and form of the urban heat island in Barcelona. Int J Climatol 14 (6):705–710CrossRefGoogle Scholar
  42. Nagai M, Hoshide S, Kario K (2010) Sleep duration as a risk factor for cardiovascular disease—a review of the recent literature. Curr Cardiol Rev 6:54–61CrossRefGoogle Scholar
  43. Nastos PT, Matzarakis A (2008) Human-biometeorological effects on sleep disturbances in Athens, Greece: a preliminary evaluation. Indoor Built Environ 17:535–542CrossRefGoogle Scholar
  44. Okamoto-Mizuno K, Mizuno K (2012) Effects of thermal environment on sleep and circadian rhythm. J Physiol Anthropol 31:1,14CrossRefGoogle Scholar
  45. Okamoto-Mizuno K, Tsuzuki K, Mizuno K (2005) Effects of humid heat exposure in later sleep segments on sleep stages and body temperature in humans. Int J Biometeorol 49:232–237CrossRefGoogle Scholar
  46. Palagini L, Bruno R, Gemignani A, Baglioni C, Ghiadoni L, Riemann D (2013) Sleep loss and hypertension: a systematic review. Curr Pharm Des 19(13):2409–2419CrossRefGoogle Scholar
  47. Park JK, Lu R, Li C, Kim E (2012) Interannual variation of tropical night frequency in Beijing and associated large-scale circulation background. Adv Atmos Sci 29(2):295–306CrossRefGoogle Scholar
  48. Parsons K (2014) Human thermal environments. The effects of hot, moderate and cold environments on human health, comfort and performance, 3rd edn. CRC PressGoogle Scholar
  49. Quinn A, Kinney P, Shaman J (2017) Predictors of summertime heat index levels in New York City apartments. Indoor Air In PressGoogle Scholar
  50. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  51. Rooney C, McMichael JA, Kovats RS, Coleman MP (1995) Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave. J Epidemiol Commun Health 52:482–486CrossRefGoogle Scholar
  52. Royé (2015) The overarching issues of the European space: spatial planning and multiple paths to sustainable and inclusive development, Faculdade de Letras da Universidade do Porto, chap Another approach for tropical nights: case studies of Faro. Lisbon and Porto, pp 269–283Google Scholar
  53. Royé D, Martí A (2015) Análisis de las noches tropicales en la fachada atlántica de la península ibérica. Una propuesta metodológica. Boletín de la Asociación de Geógrafos Españoles 69:351–368Google Scholar
  54. Royé D, Martí A (2016) Clima, sociedad, riesgos y ordenación del territorio., Universidad de Alicante. Instituto Interuniversitario de geografía. Asociació,n Española de Climatología, chap Análisis espacio-temporal de las noches cálidas en el litoral mediterráneo de España, pp 689–700Google Scholar
  55. Russo S, Sterl A (2011) Global changes in indices describing moderate temperature extremes from the daily output of a climate model. J Geophys Res Atmos 116(16)Google Scholar
  56. Sanchez-Lorenzo A, Pereira P, Lopez-Bustins J, Lolis CJ (2012) Summer night-time temperature trends on the Iberian Peninsula and their connection with large-scale atmospheric circulation patterns. Int J Climatol 32(9)Google Scholar
  57. Smith TT, Zaitchik BF, Gohlke JM (2013) Heat waves in the United States: definitions, patterns and trends. Clim Change 118:811–825CrossRefGoogle Scholar
  58. Tobías A, Díaz J (2014) Global environmental change. Springer, chap Heat waves, human health, and climate change, pp 447–453. Serie Handbook of Global Environmental PollutionGoogle Scholar
  59. Tobías A, García de Olalla P, Linares C, Bleda M, Cayla J, díaz J (2010) Short-term effects of extreme hot summer temperatures on total daily mortality in Barcelona, Spain. Int J Biometeorol 54:115–117CrossRefGoogle Scholar
  60. Tobías A, Armstrong B, Zuza I, Gasparrini A, Linares C, Diaz J (2012) Mortality on extreme heat days using official thresholds in Spain: a multi-city time series analysis. BMC Public Health 12:133Google Scholar
  61. Todd N, Valleron AJ (2015) Space–time covariation of mortality with temperature: a systematic study of deaths in France, 1968–2009. Environ Health Perspect 123(7):659–664Google Scholar
  62. Vincent L, Peterson T, Barros V, Marino M, Rusticucci M, Carrasco G, Ramirez E, Alves L, Ambrizzi T, Berlato M, Grimm A, Marengo J, Molion L, Moncunill D, Rebello E, Anunciação Y, Quintana J, Santos J, Baez J, Coronel G, Garcia J, Trebejo I, Bidegain M, Haylock M, Karoly D (2005) Observed trends in indices of daily temperature extremes in south america 1960–2000. J Climate 18:5011–5023CrossRefGoogle Scholar
  63. Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRCGoogle Scholar
  64. Xu Y, Dadvand P, Barrera-Gómez J, Sartini C, Marí-Dell’Olmo M, Borrell C, Medina-Ramón M, Sunyer J, Basagaña X (2013) Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics. J Epidemiol Community Health 67:519–525CrossRefGoogle Scholar
  65. Ye X, Wolf R, Yu W, Vaneckova P, Pan SX, Tong (2012) Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect 120:19–28CrossRefGoogle Scholar
  66. Zaninović K, Matzarakis A (2009) The bioclimatological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374CrossRefGoogle Scholar
  67. Zhang K, Li Y, Schwartz JC, O’Neill MS (2014) What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods. Environ Res 132:350–359CrossRefGoogle Scholar
  68. Zhang Y, Li C, Feng R, Zhu Y, Wu K, Tan X, Ma L (2016) The short-term effect of ambient temperature on mortality in Wuhan, China: a time-series study using a distributed lag non-linear model. Int J Environ Res Public Health 13(7):722. https://doi.org/10.3390/ijerph13070722 CrossRefGoogle Scholar
  69. Zuvela-Aloise M (2016) Enhancement of urban heat load through social inequalities on an example of a fictional city King’s Landing. Int J Biometeorol. https://doi.org/10.1007/s00484-016-1230-z

Copyright information

© ISB 2017

Authors and Affiliations

  1. 1.GeoBioMet, Department of Geography, Urbanism and Spatial PlanningUniversity of CantabriaSantanderSpain
  2. 2.Department of GeographyUniversity of Santiago de CompostelaLa CoruñaSpain

Personalised recommendations