Advertisement

Der Schmerz

, Volume 10, Issue 3, pp 140–145 | Cite as

PET und Dopplersonographie bei Kopfschmerzen

  • A. May
  • C. Weiller
Übersichten
  • 17 Downloads

Zusammenfassung

Bei der Migräne handelt es sich um eine komplexe Funktionstörung neuronaler und vaskulärer Elemente des ZNS. Die ursprüngliche Theorie einer primär vaskulären Erkrankung im Sinne intra- und extrakranieller arterieller Kaliberschwankungen ist überholt. Aufgrund umfangreicher dopplersonographischer Untersuchungen und Blutflußuntersuchungen mit Hilfe bildgebender Verfahren (SPECT und PET) muß man von einer zentral gesteuerten Imbalance trigeminal nozizeptiver, endogen antinozizeptiver und den vaskulären Tonus regelnder Hirnstammkerne ausgehen. Wenn arterielle Kaliberschwankungen während der akuten Migräneattacke oder der medikamentösen Therapie mit z. B. Sumatriptan oder Ergotaminen auftreten, so sind dies Lokalphänomene ohne Einfluß auf den kortikalen Butfluß. Der eigentliche Kopfschmerz entsteht in der Peripherie im Bereich der großen zerebralen Blutleiter, am ehesten im Gefolge einer aseptischen perivaskulären Entzündung dieser Gefäße.

Schlüsselwörter

Migräne Pathophysiologie Positronen-Emissions-Tomographie Single-Photon-Emissions-Tomographie Dopplersonographie Hirnstamm Gefäße 

PET and Doppler sonography in headaches

Abstract

Whether the primary mechanisms of migraine are vascular or neurogenic is, as yet unresolved. Early studies using Doppler sonography prompted heterogeneous results, mainly due to methodological differences. However, blood flow measurements using single photon emission tomography (SPECT) or positron emission tomography (PET) have not revealed any differences in cerebral blood flow in migraine without aura. Moreover, specific migraine compounds do not alter cortical blood flow. During attacks, increased blood flow is found in the cerebral hemispheres in cingulate, auditory and visual association cortices and the brain stem. Alltogether, these findings suggest that the pathogenesis of migraine is related to an imbalance in activity between brain stem nuclei regulating antinociception and vascular control, rather than in primary vessel diameter changes.

Key words

Migraine Pathophysiology PET SPECT Doppler sonography Brain stem Blood vessels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abernathy M, Donelly G, Kay G, Wienecke J, Morris S, Bergeson S, Ramos M, Call D, Rourke D (1994) Transcranial Doppler sonography in headache free migaineurs. Headache 34: 198CrossRefGoogle Scholar
  2. 2.
    Bates D, Ashford E, Dawson R, Ensink FBM, Gilhus NE, Olesen J, Pilgrim AJ, Shevlin P (1994) Subkutaneous sumatriptan during the migraine aura. Neurology 44: 1587CrossRefGoogle Scholar
  3. 3.
    Buzzi MG, Moskowitz MA (1990) The anti migraine drug sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99: 202CrossRefGoogle Scholar
  4. 4.
    Caecebeke JFV, Ferrari MD, Zwetsloot CP, Jansen J, Saxena PR (1992) Anti migraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks. Neurology 42: 1522CrossRefGoogle Scholar
  5. 5.
    Connor HE, Feniuk W, Humphrey PPA (1989) Characterization of 5-HT receptors mediating contraction of canine and basilar artery by use of GR 43175, a selective 5-HT1-like receptor agonist. Br J Pharmacol 96: 379CrossRefGoogle Scholar
  6. 6.
    Connor HE, Stubbs CM, Feniuk W, Humphrey PPA (1992) Effect of sumatriptan, a selective 5-HT1-like receptor agonist, on pialvessel diameter in anesthized cats. J Cereb Blood Flow Metab 12: 514CrossRefGoogle Scholar
  7. 7.
    Diener HC, Peters C, Rudzio M, Noe A, Dichgans J, Ehrmann R, Tfelt-Hansen P (1991) Ergotamine, flunarizine and sumatriptan do not change cerebral blood flow velocity in normal subjects and migraineurs. J Neurol 238: 245CrossRefGoogle Scholar
  8. 8.
    Diener HC, Limmroth V, May A, Laurich F, Auerbach, P, Wosnitza G, Eppe T (1994) Changes of cerebral blood flow velocity after treatment of migraine with sumatriptan, erotamine acetylsalicylic acid or placebo. In: Proceedings of the 1994 Symposium on cerebral hemodynamics, San Diego, February 14–17, 1994, p 109Google Scholar
  9. 9.
    Diener HC, May A, Weiller C, Kiebel S, Kappeler C. No effect of sumatriptan on regional cerebral blood flow in migraine without aura. Cephalalgia 15 [Suppl 14]: 229Google Scholar
  10. 10.
    Ferrari MD, Haan J, Blokland JAK, Arndt JW, Minnee P, Zwinderman AH, Pauwels EKJ, Saxena PR (1995) Cerebral blood flow during migraine attacks without aura and effect of sumatriptan. Arch Neurol 52: 135CrossRefGoogle Scholar
  11. 11.
    Friberg L, Olesen J, Iversen H, Sperling B (1991) Migraine pain associated with middle cerebral artery dilatation: reversal by sumatriptan. Lancet I: 13CrossRefGoogle Scholar
  12. 12.
    Friberg L, Olesen J, Iversen H, Nicolic I, Sperling B, Lassen NA, Olsen TS, Tfelt-Hansen P (1994) Interictal „patchy” regional cerebral blood flow pattens in migraine patients. A single photon emission computerized tomographic study. Eur J Neurol 1: 35CrossRefGoogle Scholar
  13. 13.
    Headache Classification Committee of the International Headache Society. (1988) Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia 8[Suppl 7]:19Google Scholar
  14. 14.
    Henkes H, May A, Kühne D, Berg-Dammer E, Diener HC (1995) Sumatriptan: vasoactive effect on human dural vessels, demonstrated by subselective angiography.Google Scholar
  15. 15.
    Humphrey PPA, Feniuk W (1991) Mode of action of the antimigraine drug sumatriptan. Trends Pharmacol Sci 12: 444CrossRefGoogle Scholar
  16. 16.
    Jansen I, Edvinson L, Mortensens A, Olesen J (1992) Sumatriptan is a potent vasoconstrictor in human dural arteries via 5-HT1-like receptor. Cephalalgia 13: 14Google Scholar
  17. 17.
    Kaube H, May A, Kiebel S, Kappeler C, Weiller C, Diener HC (1995) PET measurements of regional cortical blood flow in spontaneous migraine attacks without aura. Cephalalgia 15 [Suppl 14]: 121Google Scholar
  18. 18.
    Leao AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7: 391CrossRefGoogle Scholar
  19. 19.
    Lehmenkühler A, Richter F (1993) Spreading depression in upper and lower depths of the rat cerebral cortex and its possible implications on the type of human migraine. In: Lehmenkühler A, Grotemeyer K-H, Tegtmeyer F (eds) Migraine: basic mechanisms and treatment. Urban & Schwarzenberg, München, p 267Google Scholar
  20. 20.
    Limmroth V, May A, Auerbach P, Wosnitza G, Eppe T, Diener HC (in press) Changes in cerebral blood flow velocities after treatment with sumatriptan or placebo and its implications for the pathophysiology of migraine. J Neurol SciGoogle Scholar
  21. 21.
    Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7: 4192CrossRefGoogle Scholar
  22. 22.
    Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids im migraine. Trends Pharmacol Sci 13: 307CrossRefGoogle Scholar
  23. 23.
    Olesen J, Larsen B, Lauritzen M (1981) Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 9: 344CrossRefGoogle Scholar
  24. 24.
    Olesen J, Tfelt-Hansen P, Henriksen L, Larsen B (1981) The common migraine attack may not be initiated by cerebral ischaemia. Lancet II:438CrossRefGoogle Scholar
  25. 25.
    Olesen J, Friberg L (1991) Xenon-133 SPECT studies in migraine without aura. In: Olesen J (ed) Migraine and other headaches: the vascular mechanisms. Raven Press, London, New York, p 237Google Scholar
  26. 26.
    Scott AK, Grimes S, NG K, Critchley M, Breckenridge A, Thomson C, Pilgrim AJ (1992) Sumatriptan and cerebral perfusion in healthy volunteers. Br J Clin Pharmacol 33: 401CrossRefGoogle Scholar
  27. 27.
    Thie A, Fuhlendorf A, Spitzer K, Kunze K (1990) Transcranial Doppler evaluation of common and classical migraine. Part II. Ultrasonic features during attacks. Headache 30: 209CrossRefGoogle Scholar
  28. 28.
    Thie A, Carvajal-Lizano M, Schlichting U, Spitzer K, Kunze K (1992) Multimodal tests of cerebrovascular reactivity in migraine: a transcranial Doppler study. J Neurol 239: 338CrossRefGoogle Scholar
  29. 29.
    Thomas TD, Harpold GJ, Troost BT (1990) Cerebrovascular reactivity in migraneurs as measured by transcranial Doppler. Cephalalgia 10: 95CrossRefGoogle Scholar
  30. 30.
    Weiller C, May A, Limmroth V, Jüptner M, Kaube H, v. Schayck R, Koenen R, Diener HC (1995) Brain stem activation in human migraine attacks. Nature Med 1: 658CrossRefGoogle Scholar
  31. 31.
    Woods RP, Iacoboni M, Mazziotta JC (1994) Bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med 331: 1689CrossRefGoogle Scholar
  32. 32.
    Zwetsloot CP, Caecebeke JFV, Jansen JC, Odink J, Ferrari MD (1991) Blood flow velocity changes in migraine attacks—a transcranial Doppler study. Cephalalgia 11: 103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. May
    • 1
  • C. Weiller
    • 1
  1. 1.Neurologische UniversitätsklinikEssen

Personalised recommendations