Advertisement

Der Schmerz

, Volume 33, Issue 1, pp 4–12 | Cite as

Die Rolle der Inflammation bei Arthroseschmerzen

  • T. A. Nees
  • N. Rosshirt
  • T. Reiner
  • M. Schiltenwolf
  • B. MoradiEmail author
Schwerpunkt
  • 183 Downloads

Zusammenfassung

Die Arthrose ist weltweit eine der häufigsten Ursachen für chronische Schmerzen. Entgegen der ursprünglichen Annahme einer nichtentzündlichen Verschleißerkrankung mit Abnutzung des Gelenkknorpels („wear and tear“) wird immunologisch-inflammatorischen Prozessen inzwischen eine entscheidende Beteiligung an der Pathogenese der Arthrose beigemessen. Im Rahmen der Erkrankung kommt es zu einer chronischen Inflammation des gesamten Gelenks mit Infiltration von mononukleären Zellen (Makrophagen und T‑Zellen) in die Synovialmembran und erhöhten Konzentrationen proinflammatorischer Zyto- und Chemokine in der Synovialflüssigkeit und im Blut. Die vermehrte Freisetzung von Entzündungsmediatoren wie Interleukin (IL) IL-1β, IL-6, IL-8, IL-15 und Tumornekrosefaktor‑α (TNF‑α) induziert die Expression chondrodestruktiver Matrixmetalloproteinasen und damit die enzymatische Gelenkdegeneration. Humorale und zelluläre Mechanismen interagieren zwischen Immun- und Nervensystem auch bei der Entwicklung von Arthroseschmerzen. Entzündungsmediatoren wie IL-6 und TNF‑α führen zur peripheren Sensibilisierung freier Nervenendigungen im Gelenk. Weiterhin können entzündungsassoziierte Wachstumsfaktoren wie nerve growth factor (NGF) die Expression von Schmerzrezeptoren an primären Afferenzen triggern, während inflammatorische Neuropeptide die Erregungsschwelle von Gelenknozizeptoren herabsetzen. Der vorliegende Übersichtsartikel diskutiert den Stellenwert der Inflammation bei arthrosebedingten Gelenkschmerzen unter Berücksichtigung der klinischen Symptomatik und wichtiger inflammatorischer Pathomechanismen.

Schlüsselwörter

T‑Zellen Makrophagen Entzündung Synovitis Zytokine 

Inflammation and osteoarthritis-related pain

Abstract

Osteoarthritis (OA) is one of the major causes of chronic pain. Although OA has long been considered a non-inflammatory “wear and tear” disease leading to loss of articular cartilage, recent findings provide convincing evidence that inflammatory mechanisms play a pivotal role in the pathophysiology of OA. In OA mononuclear cells (e. g. T‑cells and macrophages) infiltrate the synovial membrane and the levels of pro-inflammatory cytokines in peripheral blood and synovial fluid samples are elevated. Increased release of inflammatory mediators including interleukin (IL) IL-1β, IL-6, IL-8, IL-15 und tumor necrosis factor alpha (TNF‑α) induces the expression of proteolytic enzymes such as matrix metalloproteinases resulting in cartilage breakdown. Molecular and cellular interactions between the immune and nervous system are also involved in the development of OA-related pain. Inflammatory mediators including IL-6 und TNF‑α lead to peripheral sensitization of joint nociceptors and growth factors (e. g. NGF) trigger the expression of TRPV1 channels in primary afferents. Moreover, neuropeptides reduce the threshold of nociceptors of OA joints. The current review highlights the role of inflammatory mechanisms in OA-induced joint pain considering clinical signs of inflammation and major inflammatory pathways.

Keywords

T‑cells Macrophages Inflammation Synovitis Cyokines 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. A. Nees, N. Rosshirt, T. Reiner, M. Schiltenwolf und B. Moradi geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Aloe L, Tuveri MA, Carcassi U et al (1992) Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis Rheum 35:351–355Google Scholar
  2. 2.
    Azamar-Llamas D, Hernandez-Molina G (2017) Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm.  https://doi.org/10.1155/2017/5468023 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Baker K, Grainger A, Niu J et al (2010) Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis 69:1779–1783Google Scholar
  4. 4.
    Benito MJ, Veale DJ, Fitzgerald O et al (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64:1263–1267PubMedCentralPubMedGoogle Scholar
  5. 5.
    Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21:16–21Google Scholar
  6. 6.
    Bondeson J, Blom AB, Wainwright S et al (2010) The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum 62:647–657Google Scholar
  7. 7.
    Brenn D, Richter F, Schaible HG (2007) Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum 56:351–359Google Scholar
  8. 8.
    Chauffier K, Laiguillon MC, Bougault C et al (2012) Induction of the chemokine IL-8/Kc by the articular cartilage: possible influence on osteoarthritis. Joint Bone Spine 79:604–609Google Scholar
  9. 9.
    Collaborators GDaH (2017) Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1260–1344Google Scholar
  10. 10.
    Conaghan PG, Felson D, Gold G et al (2006) MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthr Cartil 14(Suppl A):A87–A94Google Scholar
  11. 11.
    Denk F, Bennett DL, Mcmahon SB (2017) Nerve growth factor and pain mechanisms. Annu Rev Neurosci 40:307–325Google Scholar
  12. 12.
    Dieppe PA (2005) Relationship between symptoms and structural change in osteoarthritis: what are the important targets for therapy? J Rheumatol 32:1147–1149Google Scholar
  13. 13.
    Distel E, Cadoudal T, Durant S, Poignard A, Chevalier X, Benelli C (2009) The infrapatellar fat pad in knee osteoarthritis: An important source of interleukin‑6 and its soluble receptor. Arthritis Rheum 60(11):3374–3377Google Scholar
  14. 14.
    Dominick KL, Ahern FM, Gold CH et al (2004) Health-related quality of life and health service use among older adults with osteoarthritis. Arthritis Rheum 51:326–331Google Scholar
  15. 15.
    Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196Google Scholar
  16. 16.
    Felson DT (2005) The sources of pain in knee osteoarthritis. Curr Opin Rheumatol 17:624–628Google Scholar
  17. 17.
    Freeman MA, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. Kaibogaku Zasshi 101:505–532Google Scholar
  18. 18.
    Fuchs J, Kuhnert R, Scheidt-Nave C (2017) 12-Monats-Prävalenz von Arthrose in Deutschland. In: Robert Koch-Institut (Hrsg) Epidemiologie und GesundheitsberichterstattungGoogle Scholar
  19. 19.
    Fuchs J, Rabenberg M, Scheidt-Nave C (2013) Prävalenz ausgewählter muskuloskelettaler Erkrankungen. In: Robert Koch-Institut (Hrsg) Epidemiologie und GesundheitsberichterstattungGoogle Scholar
  20. 20.
    Gersing AS, Solka M, Joseph GB et al (2016) Progression of cartilage degeneration and clinical symptoms in obese and overweight individuals is dependent on the amount of weight loss: 48-month data from the Osteoarthritis Initiative. Osteoarthr Cartil 24:1126–1134PubMedCentralPubMedGoogle Scholar
  21. 21.
    Gleeson M, Bishop NC, Stensel DJ et al (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11:607–615Google Scholar
  22. 22.
    Gobezie R, Kho A, Krastins B et al (2007) High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther 9:R36PubMedCentralPubMedGoogle Scholar
  23. 23.
    Gomis A, Meini S, Miralles A et al (2013) Blockade of nociceptive sensory afferent activity of the rat knee joint by the bradykinin B2 receptor antagonist fasitibant. Osteoarthr Cartil 21:1346–1354Google Scholar
  24. 24.
    Gosset M, Berenbaum F, Levy A et al (2008) Mechanical stress and prostaglandin E2 synthesis in cartilage. Biorheology 45:301–320Google Scholar
  25. 25.
    Guccione AA, Felson DT, Anderson JJ et al (1994) The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am J Public Health 84:351–358PubMedCentralPubMedGoogle Scholar
  26. 26.
    Guermazi A, Roemer FW, Hayashi D et al (2011) Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis 70:805–811Google Scholar
  27. 27.
    Hannan MT, Felson DT, Pincus T (2000) Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 27:1513–1517Google Scholar
  28. 28.
    Haywood L, Mcwilliams DF, Pearson CI et al (2003) Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum 48:2173–2177Google Scholar
  29. 29.
    Hill CL, Gale DG, Chaisson CE et al (2001) Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol 28:1330–1337Google Scholar
  30. 30.
    Hill CL, Hunter DJ, Niu J et al (2007) Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 66:1599–1603PubMedCentralPubMedGoogle Scholar
  31. 31.
    Hochberg MC, Tive LA, Abramson SB et al (2016) When is osteonecrosis not osteonecrosis?: Adjudication of reported serious adverse joint events in the Tanezumab Clinical Development Program. Arthritis Rheumatol 68:382–391Google Scholar
  32. 32.
    Hoeven TA, Kavousi M, Clockaerts S et al (2013) Association of atherosclerosis with presence and progression of osteoarthritis: the Rotterdam Study. Ann Rheum Dis 72:646–651Google Scholar
  33. 33.
    Hunter DJ, Mcdougall JJ, Keefe FJ (2008) The symptoms of osteoarthritis and the genesis of pain. Rheum Dis Clin North Am 34:623–643PubMedCentralPubMedGoogle Scholar
  34. 34.
    Iannone F, De Bari C, Dell’accio F et al (2002) Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes. Rheumatology (Oxf) 41:1413–1418Google Scholar
  35. 35.
    Imamura M, Ezquerro F, Marcon Alfieri F et al (2015) Serum levels of proinflammatory cytokines in painful knee osteoarthritis and sensitization. Int J Inflam.  https://doi.org/10.1155/2015/329792 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Inglis JJ, Notley CA, Essex D et al (2007) Collagen-induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheum 56:4015–4023Google Scholar
  37. 37.
    Ioan-Facsinay A, Kloppenburg M (2013) An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthrit Res Therap 15(6):225Google Scholar
  38. 38.
    Ishijima M, Watari T, Naito K et al (2011) Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis. Arthritis Res Ther 13:R22PubMedCentralPubMedGoogle Scholar
  39. 39.
    Jordan JM, Helmick CG, Renner JB et al (2007) Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project. J Rheumatol 34:172–180Google Scholar
  40. 40.
    Klein-Wieringa IR, De Lange-Brokaar BJ, Yusuf E et al (2016) Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J Rheumatol 43:771–778PubMedGoogle Scholar
  41. 41.
    Krasnokutsky S, Belitskaya-Levy I, Bencardino J et al (2011) Quantitative magnetic resonance imaging evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum 63:2983–2991PubMedCentralPubMedGoogle Scholar
  42. 42.
    Krenn V, Morawietz L, Burmester GR et al (2006) Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 49:358–364Google Scholar
  43. 43.
    Lane NE, Schnitzer TJ, Birbara CA et al (2010) Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 363:1521–1531Google Scholar
  44. 44.
    Lawrence JS, Bremner JM, Bier F (1966) Osteo-arthrosis. Prevalence in the population and relationship between symptoms and x‑ray changes. Ann Rheum Dis 25:1–24PubMedCentralPubMedGoogle Scholar
  45. 45.
    Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35PubMedCentralPubMedGoogle Scholar
  46. 46.
    Li YS, Luo W, Zhu SA et al (2017) T cells in osteoarthritis: alterations and beyond. Front Immunol 8:356PubMedCentralPubMedGoogle Scholar
  47. 47.
    Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11:35–44Google Scholar
  48. 48.
    Loeser RF, Goldring SR, Scanzello CR et al (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707PubMedCentralPubMedGoogle Scholar
  49. 49.
    Loeuille D, Chary-Valckenaere I, Champigneulle J et al (2005) Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum 52:3492–3501Google Scholar
  50. 50.
    Lotz M, Carson DA, Vaughan JH (1987) Substance P activation of rheumatoid synoviocytes: neural pathway in pathogenesis of arthritis. Science 235:893–895Google Scholar
  51. 51.
    Mcalindon TE, Bannuru RR, Sullivan MC et al (2014) OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil 22:363–388Google Scholar
  52. 52.
    Meini S, Maggi CA (2008) Knee osteoarthritis: a role for bradykinin? Inflamm Res 57:351–361Google Scholar
  53. 53.
    Miotla Zarebska J, Chanalaris A, Driscoll C et al (2017) CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthr Cartil 25:406–412PubMedCentralPubMedGoogle Scholar
  54. 54.
    Moradi B, Rosshirt N, Tripel E et al (2015) Unicompartmental and bicompartmental knee osteoarthritis show different patterns of mononuclear cell infiltration and cytokine release in the affected joints. Clin Exp Immunol 180:143–154PubMedCentralPubMedGoogle Scholar
  55. 55.
    Moradi B, Schnatzer P, Hagmann S et al (2014) CD4(+)CD25(+)/highCD127low/(−) regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints—analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res Ther 16:R97PubMedCentralPubMedGoogle Scholar
  56. 56.
    Muraki S, Akune T, Teraguchi M et al (2015) Quadriceps muscle strength, radiographic knee osteoarthritis and knee pain: the ROAD study. BMC Musculoskelet Disord 16:305PubMedCentralPubMedGoogle Scholar
  57. 57.
    Murray CJ, Lopez AD, Organization WH (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: summaryGoogle Scholar
  58. 58.
    Neogi T (2013) The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil 21:1145–1153PubMedCentralPubMedGoogle Scholar
  59. 59.
    Niissalo S, Hukkanen M, Imai S et al (2002) Neuropeptides in experimental and degenerative arthritis. Ann N Y Acad Sci 966:384–399Google Scholar
  60. 60.
    Oh SB, Tran PB, Gillard SE et al (2001) Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21:5027–5035Google Scholar
  61. 61.
    Orita S, Koshi T, Mitsuka T et al (2011) Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord 12:144PubMedCentralPubMedGoogle Scholar
  62. 62.
    Pessler F, Dai L, Diaz-Torne C et al (2008) The synovitis of “non-inflammatory” orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann Rheum Dis 67:1184–1187Google Scholar
  63. 63.
    Poonpet T, Honsawek S (2014) Adipokines: biomarkers for osteoarthritis? World J Orthop 5:319–327PubMedCentralPubMedGoogle Scholar
  64. 64.
    Pottie P, Presle N, Terlain B et al (2006) Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis 65:1403–1405PubMedCentralPubMedGoogle Scholar
  65. 65.
    Prencipe G, Minnone G, Strippoli R et al (2014) Nerve growth factor downregulates inflammatory response in human monocytes through TrkA. J Immunol 192:3345–3354Google Scholar
  66. 66.
    Puenpatom RA, Victor TW (2009) Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad Med 121:9–20Google Scholar
  67. 67.
    Raychaudhuri SP, Raychaudhuri SK (2009) The regulatory role of nerve growth factor and its receptor system in fibroblast-like synovial cells. Scand J Rheumatol 38:207–215Google Scholar
  68. 68.
    Richter F, Natura G, Loser S et al (2010) Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum 62:3806–3814Google Scholar
  69. 69.
    Robinson WH, Lepus CM, Wang Q et al (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592PubMedCentralPubMedGoogle Scholar
  70. 70.
    Roemer FW, Guermazi A, Felson DT et al (2011) Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis 70:1804–1809PubMedCentralPubMedGoogle Scholar
  71. 71.
    Ross R, Bradshaw AJ (2009) The future of obesity reduction: beyond weight loss. Nat Rev Endocrinol 5:319–325Google Scholar
  72. 72.
    Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51:249–257PubMedCentralPubMedGoogle Scholar
  73. 73.
    Scanzello CR, Mckeon B, Swaim BH et al (2011) Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum 63:391–400PubMedCentralPubMedGoogle Scholar
  74. 74.
    Schaible HG (2012) Mechanisms of chronic pain in osteoarthritis. Curr Rheumatol Rep 14:549–556Google Scholar
  75. 75.
    Schaible HG (2014) Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther 16:470PubMedCentralPubMedGoogle Scholar
  76. 76.
    Schaible HG, Richter F, Ebersberger A et al (2009) Joint pain. Exp Brain Res 196:153–162Google Scholar
  77. 77.
    Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122Google Scholar
  78. 78.
    Schett G, Kleyer A, Perricone C et al (2013) Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 36:403–409PubMedCentralPubMedGoogle Scholar
  79. 79.
    Seidel MF, Herguijuela M, Forkert R et al (2010) Nerve growth factor in rheumatic diseases. Semin Arthritis Rheum 40:109–126Google Scholar
  80. 80.
    Sellam J, Berenbaum F (2010) The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 6:625Google Scholar
  81. 81.
    Sharma A, Kudesia P, Shi Q et al (2016) Anxiety and depression in patients with osteoarthritis: impact and management challenges. Open Access Rheumatol 8:103–113PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sohn DH, Sokolove J, Sharpe O et al (2012) Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthritis Res Ther 14:R7PubMedCentralPubMedGoogle Scholar
  83. 83.
    Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5:77–94PubMedCentralPubMedGoogle Scholar
  84. 84.
    Song IH, Althoff CE, Hermann KG et al (2009) Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Ann Rheum Dis 68:75–83Google Scholar
  85. 85.
    Sowers M, Karvonen-Gutierrez CA, Jacobson JA et al (2011) Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg Am 93:241–251PubMedCentralPubMedGoogle Scholar
  86. 86.
    Steensberg A, Fischer CP, Keller C et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437Google Scholar
  87. 87.
    Suri S, Gill SE, Massena De Camin S et al (2007) Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 66:1423–1428PubMedCentralPubMedGoogle Scholar
  88. 88.
    Sutton S, Clutterbuck A, Harris P et al (2009) The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J 179:10–24Google Scholar
  89. 89.
    Thakur M, Dickenson AH, Baron R (2014) Osteoarthritis pain: nociceptive or neuropathic? Nat Rev Rheumatol 10:374–380Google Scholar
  90. 90.
    Torres L, Dunlop DD, Peterfy C et al (2006) The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthr Cartil 14:1033–1040Google Scholar
  91. 91.
    Ushiyama T, Chano T, Inoue K et al (2003) Cytokine production in the infrapatellar fat pad: another source of cytokines in knee synovial fluids. Ann Rheum Dis 62:108–112PubMedCentralPubMedGoogle Scholar
  92. 92.
    Walsh DA, Mcwilliams DF, Turley MJ et al (2010) Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxf) 49:1852–1861Google Scholar
  93. 93.
    Wood JN (2010) Nerve growth factor and pain. N Engl J Med 363:1572–1573Google Scholar
  94. 94.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656PubMedCentralPubMedGoogle Scholar
  95. 95.
    Wylde V, Hewlett S, Learmonth ID et al (2011) Persistent pain after joint replacement: prevalence, sensory qualities, and postoperative determinants. Pain 152:566–572Google Scholar
  96. 96.
    Wylde V, Trela-Larsen L, Whitehouse MR et al (2017) Preoperative psychosocial risk factors for poor outcomes at 1 and 5 years after total knee replacement. Acta Orthop 88:530–536PubMedCentralPubMedGoogle Scholar
  97. 97.
    Yeh SH, Chuang H, Lin LW et al (2006) Regular tai chi chuan exercise enhances functional mobility and CD4CD25 regulatory T cells. Br J Sports Med 40:239–243PubMedCentralPubMedGoogle Scholar
  98. 98.
    Yudkin JS (2007) Inflammation, obesity, and the metabolic syndrome. Horm Metab Res 39:707–709Google Scholar
  99. 99.
    Yusuf E, Nelissen RG, Ioan-Facsinay A et al (2010) Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis 69:761–765Google Scholar
  100. 100.
    Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A et al (2011) Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthrit Rheum 63(3):691–699Google Scholar
  101. 101.
    Zhuo Q, Yang W, Chen J et al (2012) Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol 8:729–737Google Scholar

Copyright information

© Deutsche Schmerzgesellschaft e.V. Published by Springer Medizin Verlag GmbH, ein Teil von Springer Nature - all rights reserved 2018

Authors and Affiliations

  • T. A. Nees
    • 1
  • N. Rosshirt
    • 1
  • T. Reiner
    • 1
  • M. Schiltenwolf
    • 1
  • B. Moradi
    • 1
    Email author
  1. 1.Klinik für Orthopädie und Unfallchirurgie, Zentrum für Orthopädie, Unfallchirurgie und ParaplegiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations