Advertisement

Wavelet analysis of precipitation extremes over India and teleconnections to climate indices

  • Maheswaran Rathinasamy
  • Ankit Agarwal
  • Bellie SivakumarEmail author
  • Norbert Marwan
  • Jürgen Kurths
Original Paper

Abstract

Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Niño 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2–8 years) and interdecadal (8–32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Niño 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region.

Keywords

Extreme precipitation Teleconnection patterns Wavelets Partial wavelet coherence India 

Abbreviations

ENSO

El Niño-Southern Oscillation

IOD

Indian Ocean Dipole

PDO

Pacific Decadal Oscillation

SST

Sea surface temperature

Notes

Acknowledgements

Maheswaran Rathinasamy acknowledges the funding support from the Inspire Faculty Award, Department of Science and Technology, India (IFA-12-ENG/28) and Science and Engineering Research Board (SERB), India (ECRA/16/1721). Ankit Agarwal was financially supported by Deutsche Forschungsgemeinschaft (DFG) (GRK 2043/1) within the graduate research training group Natural risk in a changing world (NatRiskChange) at the University of Potsdam (http://www.uni-potsdam.de/natriskchange).

Supplementary material

477_2019_1738_MOESM1_ESM.pdf (3.3 mb)
Supplementary material 1 (PDF 3386 kb)

References

  1. Addison PS (2005) Wavelet transforms and the ECG: a review. Physiol Meas 26(5):R155–R199.  https://doi.org/10.1088/0967-3334/26/5/R01 CrossRefGoogle Scholar
  2. Agarwal A (2019) Unraveling spatio-temporal climatic patterns via multi-scale complex networks. Universität Potsdam, PotsdamGoogle Scholar
  3. Agarwal A, Maheswaran R, Kurths J, Khosa R (2016) Wavelet spectrum and self-organizing maps-based approach for hydrologic regionalization—a case study in the Western United States. Water Resour Manag 30(12):4399–4413.  https://doi.org/10.1007/s11269-016-1428-1 CrossRefGoogle Scholar
  4. Agarwal A, Marwan N, Maheswaran R, Merz B, Kurths J (2018) Quantifying the roles of single stations within homogeneous regions using complex network analysis. J Hydrol.  https://doi.org/10.1016/j.jhydrol.2018.06.050 CrossRefGoogle Scholar
  5. Agarwal A, Caesar L, Marwan N, Maheswaran R, Merz B, Kurths J (2019) Network-based identification and characterization of teleconnections on different scales. Sci Rep.  https://doi.org/10.1038/s41598-019-45423-5 CrossRefGoogle Scholar
  6. Alexander LV, Uotila P, Nicholls N (2009) Influence of sea surface temperature variability on global temperature and precipitation extremes. J Geophys Res.  https://doi.org/10.1029/2009jd012301 CrossRefGoogle Scholar
  7. Araghi A, Mousavi-Baygi M, Adamowski J, Martinez C (2017) Association between three prominent climatic teleconnections and precipitation in Iran using wavelet coherence. Int J Climatol 37(6):2809–2830.  https://doi.org/10.1002/joc.4881 CrossRefGoogle Scholar
  8. Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J Clim 17(16):3141–3155.  https://doi.org/10.1175/1520-0442(2004)017%3c3141:IACIOE%3e2.0.CO;2 CrossRefGoogle Scholar
  9. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res.  https://doi.org/10.1029/2006jc003798 CrossRefGoogle Scholar
  10. Azad S, Rajeevan M (2016) Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming. Sci Rep.  https://doi.org/10.1038/srep20145 CrossRefGoogle Scholar
  11. Behera SK, Ratnam JV (2018) Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD. Sci Rep.  https://doi.org/10.1038/s41598-017-18396-6 CrossRefGoogle Scholar
  12. Bhatla R, Singh AK, Mandal B, Ghosh S, Pandey SN, Sarkar A (2016) Influence of North Atlantic oscillation on Indian summer monsoon rainfall in relation to quasi-binneal oscillation. Pure Appl Geophys 173(8):2959–2970.  https://doi.org/10.1007/s00024-016-1306-z CrossRefGoogle Scholar
  13. Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J (2019) Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature. 566:373–377.  https://doi.org/10.1038/s41586-018-0872-x CrossRefGoogle Scholar
  14. Cazes-Boezio G, Robertson AW, Mechoso CR (2003) Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. J Clim 16(8):1159–1176.  https://doi.org/10.1175/1520-0442(2003)16%3c1159:SDOETO%3e2.0.CO;2 CrossRefGoogle Scholar
  15. Cherchi A, Navarra A (2003) Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM. Clim Dyn 20(4):365–379.  https://doi.org/10.1007/s00382-002-0280-6 CrossRefGoogle Scholar
  16. Chowdary JS, Xie S-P, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng X-T (2012) Interdecadal variations in ENSO teleconnection to the indo-Western Pacific for 1870–2007*. J Clim 25(5):1722–1744.  https://doi.org/10.1175/JCLI-D-11-00070.1 CrossRefGoogle Scholar
  17. Chowdhury RK, Beecham S (2013) Influence of SOI, DMI and Niño3.4 on South Australian rainfall. Stoch Environ Res Risk Assess 27(8):1909–1920.  https://doi.org/10.1007/s00477-013-0726-x CrossRefGoogle Scholar
  18. Cioffi F, Conticello F, Lall U, Marotta L, Telesca V (2017) Large scale climate and rainfall seasonality in a Mediterranean Area: insights from a non-homogeneous Markov model applied to the Agro-Pontino plain: climate seasonality in Agro Pontino Plain. Hydrol Process 31(3):668–686.  https://doi.org/10.1002/hyp.11061 CrossRefGoogle Scholar
  19. Curtis S, Salahuddin A, Adler RF, Huffman GJ, Gu G, Hong Y (2007) Precipitation extremes estimated by GPCP and TRMM: eNSO relationships. J Hydrometeorol 8(4):678–689.  https://doi.org/10.1175/JHM601.1 CrossRefGoogle Scholar
  20. Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, New YorkCrossRefGoogle Scholar
  21. Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Clim 8(6):1677–1680.  https://doi.org/10.1175/1520-0442(1995)008%3c1677:OTRBTA%3e2.0.CO;2 CrossRefGoogle Scholar
  22. Duan W, He B, Takara K, Luo P, Hu M, Alias NE, Nover D (2015) Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices. Clim Dyn 45(7–8):2273–2292.  https://doi.org/10.1007/s00382-015-2778-8 CrossRefGoogle Scholar
  23. Ekhtiari N, Agarwal A, Marwan N, Donner RV (2019) Disentangling the multi-scale effects of sea-surface temperatures on global precipitation: a coupled networks approach. Chaos Interdiscip J Nonlinear Sci 29(6):063116.  https://doi.org/10.1063/1.5095565 CrossRefGoogle Scholar
  24. Flandrin P (1988) A time–frequency formulation of optimum detection. IEEE Trans Acoust Speech Signal Process 36(9):1377–1384.  https://doi.org/10.1109/29.90365 CrossRefGoogle Scholar
  25. Foufoula-Georgiou E, Kumar P (eds) (1994) Wavelets in geophysics. Academic Press, San DiegoGoogle Scholar
  26. Gan TY, Gobena AK, Wang Q (2007) Precipitation of southwestern Canada: wavelet, scaling, multifractal analysis, and teleconnection to climate anomalies: Precipitation Variability of SW Canada. J Geophys Res Atmos.  https://doi.org/10.1029/2006jd007157 CrossRefGoogle Scholar
  27. Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25(4):537–554.  https://doi.org/10.1007/s00477-010-0420-1 CrossRefGoogle Scholar
  28. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22(7):1589–1609.  https://doi.org/10.1175/2008JCLI2429.1 CrossRefGoogle Scholar
  29. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566.  https://doi.org/10.5194/npg-11-561-2004 CrossRefGoogle Scholar
  30. Hanley DE, Bourassa MA, O’Brien JJ, Smith SR, Spade ER (2003) A quantitative evaluation of ENSO indices. J Clim 16(8):1249–1258.  https://doi.org/10.1175/1520-0442(2003)16%3c1249:AQEOEI%3e2.0.CO;2 CrossRefGoogle Scholar
  31. Ihara C, Kushnir Y, Cane MA (2008) Warming trend of the Indian ocean SST and Indian ocean dipole from 1880 to 2004*. J Clim 21(10):2035–2046.  https://doi.org/10.1175/2007JCLI1945.1 CrossRefGoogle Scholar
  32. Khedun CP, Mishra AK, Singh VP, Giardino JR (2014) A copula-based precipitation forecasting model: investigating the interdecadal modulation of ENSO’s impacts on monthly precipitation: Copula-Based Precipitation Forecasting Models. Water Resour Res 50(1):580–600.  https://doi.org/10.1002/2013WR013763 CrossRefGoogle Scholar
  33. Kim T-W, Yoo C, Ahn J-H (2008) Influence of climate variation on seasonal precipitation in the Colorado River Basin. Stoch Environ Res Risk Assess 22(3):411–420.  https://doi.org/10.1007/s00477-007-0126-1 CrossRefGoogle Scholar
  34. Kinter JL, Miyakoda K, Yang S (2002) Recent change in the connection from the Asian monsoon to ENSO. J Clim 15(10):1203–1215.  https://doi.org/10.1175/1520-0442(2002)015%3c1203:RCITCF%3e2.0.CO;2 CrossRefGoogle Scholar
  35. Konapala G, Valiya Veettil A, Mishra AK (2018) Teleconnection between low flows and large-scale climate indices in Texas River basins. Stoch Environ Res Risk Assess 32(8):2337–2350.  https://doi.org/10.1007/s00477-017-1460-6 CrossRefGoogle Scholar
  36. Krishnamurthy V, Goswami BN (2000) Indian monsoon–ENSO relationship on interdecadal timescale. J Clim 13(3):579–595.  https://doi.org/10.1175/1520-0442(2000)013%3c0579:IMEROI%3e2.0.CO;2 CrossRefGoogle Scholar
  37. Krishnamurthy L, Krishnamurthy V (2014) Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Clim Dyn 42(9–10):2397–2410.  https://doi.org/10.1007/s00382-013-1856-z CrossRefGoogle Scholar
  38. Krishnamurthy L, Krishnamurthy V (2016) Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Clim Dyn 46(7–8):2269–2285.  https://doi.org/10.1007/s00382-015-2701-3 CrossRefGoogle Scholar
  39. Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21(3–4):233–242.  https://doi.org/10.1007/s00382-003-0330-8 CrossRefGoogle Scholar
  40. Kumar KK (1999) On the weakening relationship between the Indian Monsoon and ENSO. Science 284(5423):2156–2159.  https://doi.org/10.1126/science.284.5423.2156 CrossRefGoogle Scholar
  41. Kurths J, Agarwal A, Shukla R, Marwan N, Rathinasamy M, Caesar L, Krishnan R, Merz B (2019) Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach. Nonlinear Process Geophys 26(3):251–266.  https://doi.org/10.5194/npg-26-251-2019 CrossRefGoogle Scholar
  42. Lakhanpal A, Sehgal V, Maheswaran R, Khosa R, Sridhar V (2017) A non-linear and non-stationary perspective for downscaling mean monthly temperature: a wavelet coupled second order Volterra model. Stoch Environ Res Risk Assess 31(9):2159–2181.  https://doi.org/10.1007/s00477-017-1444-6 CrossRefGoogle Scholar
  43. Li Q, Chen J (2014) Teleconnection between ENSO and climate in South China. Stoch Environ Res Risk Assess 28(4):927–941.  https://doi.org/10.1007/s00477-013-0793-z CrossRefGoogle Scholar
  44. Li G, Chen J, Wang X, Tan Y, Jiang X (2017) Modulation of Pacific Decadal Oscillation on the relationship of El Niño with southern China rainfall during early boreal winter. Atmos Res Lett 18(8):336–341CrossRefGoogle Scholar
  45. Lorenzo MN, Taboada JJ, Gimeno L (2008) Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int J Climatol 28(11):1493–1505.  https://doi.org/10.1002/joc.1646 CrossRefGoogle Scholar
  46. Maity R, Nagesh Kumar D (2006) Bayesian dynamic modeling for monthly Indian summer monsoon rainfall using El Niño-Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO). J Geophys Res.  https://doi.org/10.1029/2005jd006539 CrossRefGoogle Scholar
  47. Maraun D, Kurths J (2004) Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process Geophys 11(4):505–514.  https://doi.org/10.5194/npg-11-505-2004 CrossRefGoogle Scholar
  48. Mihanović H, Orlić M, Pasarić Z (2009) Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic. J Mar Syst 78:S157–S168.  https://doi.org/10.1016/j.jmarsys.2009.01.021 CrossRefGoogle Scholar
  49. Miller JR, Russell GL, Caliri G (1994) Continental-scale river flow in climate models. J Clim 7(6):914–928.  https://doi.org/10.1175/1520-0442(1994)007%3c0914:CSRFIC%3e2.0.CO;2 CrossRefGoogle Scholar
  50. Mokhov II, Smirnov DA, Nakonechny PI, Kozlenko SS, Kurths J (2012) Relationship between El-Niño/Southern oscillation and the Indian monsoon. Izv Atmos Ocean Phys 48(1):47–56.  https://doi.org/10.1134/S0001433812010082 CrossRefGoogle Scholar
  51. Ng EKW, Chan JCL (2012) Interannual variations of tropical cyclone activity over the north Indian Ocean. Int J Climatol 32(6):819–830.  https://doi.org/10.1002/joc.2304 CrossRefGoogle Scholar
  52. Niu J (2013) Precipitation in the Pearl River basin, South China: scaling, regional patterns, and influence of large-scale climate anomalies. Stoch Environ Res Risk Assess 27(5):1253–1268.  https://doi.org/10.1007/s00477-012-0661-2 CrossRefGoogle Scholar
  53. Niu J, Chen J, Sivakumar B (2014) Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China. Hydrol Earth Syst Sci 18(4):1475–1492.  https://doi.org/10.5194/hess-18-1475-2014 CrossRefGoogle Scholar
  54. Pai DS, Sridhar L, Badwaik MR, Rajeevan M (2015) Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. Clim Dyn 45(3–4):755–776.  https://doi.org/10.1007/s00382-014-2307-1 CrossRefGoogle Scholar
  55. Rheinwalt A, Goswami B, Boers N, Heitzig J, Marwan N, Krishnan R, Kurths J (2015) Teleconnections in climate networks: a network-of-networks approach to investigate the influence of sea surface temperature variability on monsoon systems. In: Lakshmanan V, Gilleland E, McGovern A, Tingley M (eds) Machine learning and data mining approaches to climate science. Springer, Cham, pp 23–33CrossRefGoogle Scholar
  56. Shi H, Li T, Wei J, Fu W, Wang G (2016) Spatial and temporal characteristics of precipitation over the three-river headwaters region during 1961–2014. J Hydrol Reg Stud 6:52–65.  https://doi.org/10.1016/j.ejrh.2016.03.001 CrossRefGoogle Scholar
  57. Tan X, Gan TY, Shao D (2016) Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies: large precipitation and climate anomalies. J Geophys Res Atmos 121(24):14469–14486.  https://doi.org/10.1002/2016JD025533 CrossRefGoogle Scholar
  58. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78.  https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2 CrossRefGoogle Scholar
  59. Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci 110(14):5347–5352.  https://doi.org/10.1073/pnas.1219405110 CrossRefGoogle Scholar
  60. Wang H, Chen Y, Li W (2014) Hydrological extreme variability in the headwater of Tarim River: links with atmospheric teleconnection and regional climate. Stoch Environ Res Risk Assess 28(2):443–453.  https://doi.org/10.1007/s00477-013-0763-5 CrossRefGoogle Scholar
  61. Wang H, Kumar A, Murtuguddhe R (2016) Interaction between the indian ocean dipole and ENSO associated with ocean subsurface variability, science and technology infusion climate bulletin. In: 41st NOAA annual climate diagnostics and prediction workshop, Orono, 3–6 OctoberGoogle Scholar
  62. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A (2017) El Niño and southern oscillation (ENSO): A Review. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral reefs of the eastern tropical pacific, vol 8. Springer, Dordrecht, pp 85–106CrossRefGoogle Scholar
  63. Yoon S-K, Kim J-S, Lee J-H, Moon Y-I (2013) Hydrometeorological variability in the Korean Han River Basin and its sub-watersheds during different El Niño phases. Stoch Environ Res Risk Assess 27(6):1465–1477.  https://doi.org/10.1007/s00477-012-0683-9 CrossRefGoogle Scholar
  64. Zhao Y, Zou X, Cao L, Xu X (2014) Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quat Int 333:26–39.  https://doi.org/10.1016/j.quaint.2014.03.060 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MVGR College of EngineeringVizianagaramIndia
  2. 2.Research Domain Complexity SciencePotsdam Institute for Climate Impact ResearchPotsdamGermany
  3. 3.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdamGermany
  4. 4.GFZ German Research Centre for GeosciencesPotsdamGermany
  5. 5.Department of Civil EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia
  6. 6.Institute of PhysicsHumboldt Universität zu BerlinBerlinGermany
  7. 7.Department of HydrologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations