Prediction of air pollutants PM10 by ARBX(1) processes

  • J. Álvarez-Liébana
  • M. D. Ruiz-MedinaEmail author
Original Paper


This work adopts a Banach-valued time series framework for component-wise estimation and prediction, from temporal correlated functional data, in presence of exogenous variables. The strong-consistency of the proposed functional estimator and associated plug-in predictor is formulated. The simulation study undertaken illustrates their large-sample size properties. Air pollutants PM10 curve forecasting, in the Haute-Normandie region (France), is addressed by implementation of the functional time series approach presented.


Air pollutants forecasting Banach spaces Functional time series Meteorological variables Strong consistency 



This work was supported in part by projects MTM2015–71839–P and PGC2018-099549-B-I00 (co-funded by Feder funds), of the DGI, MINECO, Spain.


  1. Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2016) Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck in Hilbert and Banach spaces. Stat Probab Lett 117:12–22Google Scholar
  2. Álvarez-Liébana J, Bosq D, Ruiz-Medina MD (2017) Asymptotic properties of a componentwise ARH(1) plug-in predictor. J Multivar Anal 155:12–34Google Scholar
  3. Aneiros-Pérez G, Vieu P (2008) Nonparametric time series prediction: a semi-functional partial linear modeling. J Multivar Anal 99:834–857Google Scholar
  4. Angelini C, De Candittis D, Leblanc F (2003) Wavelet regression estimation in nonparametric mixed effect models. J Multivar Anal 85:267–291Google Scholar
  5. Antoniadis A, Sapatinas T (2003) Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes. J Multivar Anal 87:133–158Google Scholar
  6. Besse PC, Cardot H, Stephenson DB (2000) Autoregressive forecasting of some functional climatic variations. Scand J Stat 27:673–687Google Scholar
  7. Blanke D, Bosq D (2016) Detecting and estimating intensity of jumps for discretely observed ARMAD(1,1) processes. J Multivar Anal 146:119–137Google Scholar
  8. Bohorquez M, Giraldo R, Mateu J (2017) Multivariate functional random fields: prediction and optimal sampling. Stoch Environ Res Risk Assess 31:53–70Google Scholar
  9. Bosq D (2000) Linear processes in function spaces. Springer, New YorkGoogle Scholar
  10. Bueno-Larraz B, Klepsch J (2018) Variable selection for the prediction of \(C[0,1]\)-valued AR processes using RKHS. arXiv:1710.06660
  11. Damon J, Guillas S (2002) The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13:759–774Google Scholar
  12. Damon J, Guillas S (2005) Estimation and simulation of autoregressie Hilbertian processes with exogenous variables. Stat Inference Stoch Process 8:185–204Google Scholar
  13. Daubechies I (1992) Ten lectures on wavelets, vol 61. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, PhiladelphiaGoogle Scholar
  14. Dehling H, Sharipov OS (2005) Estimation of mean and covariance operator for Banach space valued autoregressive processes with dependent innovations. Stat Inference Stoch Process 8:137–149Google Scholar
  15. Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239Google Scholar
  16. El Hajj L (2011) Limit theorems for \({\cal{D}}([0,1])\)-valued autoregressive processes. C R Acad Sci Paris Sér I Math 349:821–825Google Scholar
  17. Febrero-Bande M, Galeano P, González-Manteiga W (2008) Outlier detection in functional data by depth measures with application to identify abnormal NO\(_x\) levels. Environmetrics 19:331–345Google Scholar
  18. Fernández de Castro BM, González-Manteiga W, Guillas S (2005) Functional samples and bootstrap for predicting sulfur dioxide levels. Technometrics 47:212–222Google Scholar
  19. Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New YorkGoogle Scholar
  20. Geenens G (2011) Curse of dimensionality and related issues in nonparametric functional regression. Stat Surv 5:30–43Google Scholar
  21. Giraldo R, Delicado P, Mateu J (2010) Geostatistics for functional data: an ordinary kriging approach. Environ Ecol Stat 18:411–426Google Scholar
  22. Gocheva-Ilieva S, Ivanov A, Voynikova D, Boyadzhiev D (2014) Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch Environ Res Risk Assess 28:1045–1060Google Scholar
  23. Goia A, Vieu P (2015) A partitioned single functional index model. Comput Stat 30:673–692Google Scholar
  24. Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Anal 146:1–6Google Scholar
  25. Grivas G, Chaloulakou A (2006) Artificial neural network models for prediction of PM10 hourly concentrations in the greater area of Athens, Greece. Atmos Environ 40:1216–1229Google Scholar
  26. Guillas S (2002) Doubly stochastic Hilbertian processes. J Appl Probab 39:566–580Google Scholar
  27. He H-D, Lu W-Z, Xue Y (2015) Prediction of particulate matters at urban intersection by using multilayer perceptron model based on principal components. Stoch Environ Res Risk Assess 29:2107–2114Google Scholar
  28. Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New YorkGoogle Scholar
  29. Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, New YorkGoogle Scholar
  30. Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for functional data for air quality monitoring. Stoch Environ Res Risk Assess 28:1171–1186Google Scholar
  31. Kuelbs J (1970) Gaussian measures on a Banach space. J Funct Anal 5:354–367Google Scholar
  32. Labbas A, Mourid T (2002) Estimation et prévision d’un processus autorégressif Banach. C R Acad Sci Paris Sér I 335:767–772Google Scholar
  33. Marion JM, Pumo B (2004) Comparaison des modéles ARH(1) et ARHD(1) sur des données physiologiques. Ann ISUP 48:29–38Google Scholar
  34. Mas A (2004) Consistance du prédicteur dans le modèle ARH\((1)\): le cas compact. Ann ISUP 48:39–48Google Scholar
  35. Mas A (2007) Weak-convergence in the functional autoregressive model. J Multivar Anal 98:1231–1261Google Scholar
  36. Moritz S, Bartz-Beielstein T (2017) imputeTS: time series missing value imputation in R. R J 9:207–218Google Scholar
  37. Nerini D, Monestiez P, Mantea C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409–418Google Scholar
  38. Pang W, Christakos G, Wang J-F (2009) Comparative spatiotemporal analysis of fine particulate matter pollution. Environmetrics 21:305–317Google Scholar
  39. Parvardeh A, Jouzdani NM, Mahmoodi S, Soltani AR (2017) First order autoregressive periodically correlated model in Banach spaces: existence and central limit theorem. J Math Anal Appl 449:756–768Google Scholar
  40. Paschalidou AK, Karakitsios S, Kleanthous S, Kassomenos PA (2011) Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18:316–327Google Scholar
  41. Ruiz-Medina MD (2011) Spatial autorregresive and moving average Hilbertian processes. J Multivar Anal 102:292–305Google Scholar
  42. Ruiz-Medina MD, Álvarez-Liébana J (2019) A note on strong-consistency of componentwise ARH(1) predictors. Stat Probab Lett 145:224–248Google Scholar
  43. Ruiz-Medina MD, Álvarez-Liébana J (2019) Strongly consistent autoregressive predictors in abstract Banach spaces. J Multivar Anal. CrossRefGoogle Scholar
  44. Ruiz-Medina MD, Espejo RM (2012) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk Assess 26:335–344Google Scholar
  45. Ruiz-Medina MD, Espejo RM, Ugarte MD, Militino AF (2014) Functional time series analysis of spatio-temporal epidemiological data. Stoch Environ Res Risk Assess 28:943–954Google Scholar
  46. Slini T, Kaprara A, Karatzas K, Mousiopoulos N (2006) PM10 forecasting for Thessaloniki, Greece. Environ Model Softw 21:559–565Google Scholar
  47. Stadlober E, Hormann S, Pfeiler B (2008) Quality and performance of a PM10 daily forecasting model. Atmos Environ 42:1098–1109Google Scholar
  48. Triebel T (1983) Theory of function spaces II. Birkhauser, BaselGoogle Scholar
  49. Vieu P (2018) On dimension reduction models for functional data. Stat Prob Lett 136:134–138Google Scholar
  50. Zhang L, Liu Y, Zhao F (2018) Singular value decomposition analysis of spatial relationships between monthly weather and air pollution index in China. Stoch Environ Res Risk Assess 32:733–748Google Scholar
  51. Zolghadri A, Cazaurang F (2006) Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations. Environ Model Softw 21:885–894Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Statistics, O.R. and Didactics of MathematicsUniversity of OviedoOviedoSpain
  2. 2.Department of Statistics and O.R.University of GranadaGranadaSpain

Personalised recommendations