Advertisement

Improving the spatial prediction of soil Zn by converting outliers into soft data for BME method

  • Chu-tian Zhang
  • Yong YangEmail author
Original Paper
  • 68 Downloads

Abstract

Understanding the spatial patterns of heavy metals is important for the protection and remediation of urban soil. Considering that the conventional Geostatistical methods, such as ordinary kriging (OK), are sensitive to dataset outliers, this study converted the identified outliers into a discrete probability density function (PDF). Then, the PDF was used as soft data in the Bayesian maximum entropy (BME) framework to perform a spatial prediction of soil Zn contents in Wuhan City, Central China. By using OK as the reference method, the BME framework was found to produce an overall further accurate prediction, and the PDF of BME predictions was further informative and close to the observed Zn concentrations. An improved BME performance can be expected if soft data with high quality are provided. The BME is a promising method in environmental science, where the so-called outliers that probably carry important information are common.

Keywords

Bayesian maximum entropy Soil Zn contents Outliers Discrete probability density function Soft data 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41701239 and 41671217) and the Fundamental Research Funds for the Central Universities (No. 2452016190).

Supplementary material

477_2018_1641_MOESM1_ESM.docx (687 kb)
Supplementary material 1 (DOCX 687 kb)

References

  1. Benhaddya M, Hadjel M (2014) Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria. Environ Earth Sci 71(3):1473–1486CrossRefGoogle Scholar
  2. China National Environmental Monitoring Centre (1990) The background values of soil elements in China. China Environmental Science Press, Beijing (in Chinese) Google Scholar
  3. Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 22(7):763–777CrossRefGoogle Scholar
  4. Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New YorkGoogle Scholar
  5. Christakos G, Li XY (1998) Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators? Math Geol 30(4):435–462CrossRefGoogle Scholar
  6. Christakos G, Serre ML (2000) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ 34(20):3393–3406CrossRefGoogle Scholar
  7. Christakos G, Kolovos A, Serre ML, Vukovich F (2004) Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Trans Geosci Remote Sens 42(5):991–1008CrossRefGoogle Scholar
  8. Cressie N, Hawkins DM (1980) Robust estimation of the variogram: I. J Int Assoc Math Geol 12(2):115–125CrossRefGoogle Scholar
  9. Douaik A, Van Meirvenne M, Toth T (2005) Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data. Geoderma 128(3–4):234–248CrossRefGoogle Scholar
  10. Gao SG, Zhu ZL, Liu SM, Jin R, Yang GC, Tan L (2014) Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. Int J Appl Earth Obs 32:54–66CrossRefGoogle Scholar
  11. Guo GH, Wu FC, Xie FZ, Zhang RQ (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci China 24(3):410–418CrossRefGoogle Scholar
  12. Helmreich B, Hilliges R, Schriewer A, Horn H (2010) Runoff pollutants of a highly trafficked urban road—correlation analysis and seasonal influences. Chemosphere 80(9):991–997CrossRefGoogle Scholar
  13. Lark RM (2000) A comparison of some robust estimators of the variogram for use in soil survey. Eur J Soil Sci 51(1):137–157CrossRefGoogle Scholar
  14. Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266CrossRefGoogle Scholar
  15. McGrath D, Zhang C (2003) Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Appl Geochem 18(10):1629–1639CrossRefGoogle Scholar
  16. Meklit T, Meirvenne MV, Verstraete S, Bonroy J, Tack F (2009) Combining marginal and spatial outliers identification to optimize the mapping of the regional geochemical baseline concentration of soil heavy metals. Geoderma 148(3):413–420CrossRefGoogle Scholar
  17. Meza-Figueroa D, De la O-Villanueva M, De la Parra ML (2007) Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ 41(2):276–288CrossRefGoogle Scholar
  18. Ministry of Ecology and Environment of the People’s Republic of China (2018) Soil environmental quality risk control standard for soil contamination of agricultural land (in Chinese) Google Scholar
  19. Olea RA (2006) A six-step practical approach to semivariogram modeling. Stoch Environ Res Risk A 20(5):307–318CrossRefGoogle Scholar
  20. Oliver MA, Webster R (2014) A tutorial guide to geostatistics: computing and modelling variograms and kriging. CATENA 113:56–69CrossRefGoogle Scholar
  21. Puangthongthub S, Wangwongwatana S, Kamens RM, Serre ML (2007) Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network. Atmos Environ 41(36):7788–7805CrossRefGoogle Scholar
  22. Reyes JM, Serre ML (2014) An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources. Environ Sci Technol 48(3):1736–1744CrossRefGoogle Scholar
  23. Savelieva E, Demyanov V, Kanevski M, Serre M, Christakos G (2005) BME-based uncertainty assessment of the chernobyl fallout. Geoderma 128(3–4):312–324CrossRefGoogle Scholar
  24. Shi TT, Yang XM, Christakos G, Wang JF, Liu L (2015) Spatiotemporal interpolation of rainfall by combining BME theory and satellite rainfall estimates. Atmosphere 6(9):1307–1326CrossRefGoogle Scholar
  25. Wang JF, Zhang TL, Fu BJ (2016) A measure of spatial stratified heterogeneity. Ecol Indic 67:250–256CrossRefGoogle Scholar
  26. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, HobokenCrossRefGoogle Scholar
  27. Wuhan Bureau of Statistics (2013) The Wuhan Statistical Bulletin of National Economic and Social Development (in Chinese) Google Scholar
  28. Xu CD, Wang JF, Hu MG, Li QX (2014) Estimation of uncertainty in temperature observations made at meteorological stations using a probabilistic spatiotemporal approach. J Appl Meteorol Climatol 53(6):1538–1546CrossRefGoogle Scholar
  29. Yu H-L, Kolovos A, Christakos G, Chen J-C, Warmerdam S, Dev B (2007) Interactive spatiotemporal modelling of health systems: the SEKS-GUI framework. Stoch Environ Res Risk A 21(5):555–572CrossRefGoogle Scholar
  30. Zhang CS, Tang Y, Luo L, Xu WL (2009) Outlier identification and visualization for Pb concentrations in urban soils and its implications for identification of potential contaminated land. Environ Pollut 157(11):3083–3090CrossRefGoogle Scholar
  31. Zhang CT, Yang Y, Li WD, Zhang CR, Zhang RX, Mei Y, Liao XS, Liu YY (2015) Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China. Environ Monit Assess 187(9):1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
  2. 2.College of Resources and EnvironmentHuazhong Agricultural UniversityWuhanChina
  3. 3.Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River)Ministry of AgricultureWuhanChina

Personalised recommendations