Advertisement

Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil

  • Vanessa A. GodoyEmail author
  • Lázaro Valentin Zuquette
  • J. Jaime Gómez-Hernández
Original Paper
  • 87 Downloads

Abstract

Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed using real data collected in the laboratory. Upscaling of hydraulic conductivity, longitudinal hydrodynamic dispersion, and retardation factor were done using three different approaches of varying complexity. How uncertainty propagates after upscaling was also studied. The results show that upscaling must be taken into account if a good reproduction of the flow and transport behavior of a given soil is to be attained when modeled at larger than laboratory scales. The results also show that arrival time uncertainty was well reproduced after solute transport upscaling. This work represents a first demonstration of flow and reactive transport upscaling in a soil based on laboratory data. It also shows how simple upscaling methods can be incorporated into daily modeling practice using commercial flow and transport codes.

Keywords

Column experiments Spatial variability Macrodispersion coefficient Hydraulic conductivity upscaling Stochastic analysis 

Notes

Acknowledgements

The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is acknowledged. The first author also thanks the international mobility grant awarded by CNPq, through the Sciences Without Borders program (Grant Number: 200597/2015-9). The international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo is also acknowledged. DHI-WASI is gratefully thanked for providing a FEFLOW license.

References

  1. Ahuja LR, Naney JW, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699.  https://doi.org/10.2136/sssaj1984.03615995004800040001x CrossRefGoogle Scholar
  2. Bellin A, Lawrence AE, Rubin Y (2004) Models of sub-grid variability in numerical simulations of solute transport in heterogeneous porous formations: three-dimensional flow and effect of pore-scale dispersion. Stoch Environ Res Risk Assess 18:31–38.  https://doi.org/10.1007/s00477-003-0164-2 CrossRefGoogle Scholar
  3. Brent RP (1973) Algorithms for minimization without derivatives. Prentice Hall, Englewood CliffsGoogle Scholar
  4. Brusseau ML (1998) Non-ideal transport of reactive solutes in heterogeneous porous media: 3. model testing and data analysis using calibration versus prediction. J Hydrol 209:147–165.  https://doi.org/10.1016/S0022-1694(98)00121-8 CrossRefGoogle Scholar
  5. Brusseau ML, Srivastava R (1999) Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the cape cod natural-gradient field experiment. Water Resour Res 35:1113–1125.  https://doi.org/10.1029/1998WR900019 CrossRefGoogle Scholar
  6. Brutsaert W (1967) Some methods of calculating unsaturated permeability. Trans ASAE 10:400–404CrossRefGoogle Scholar
  7. Cadini F, De Sanctis J, Bertoli I, Zio E (2013) Upscaling of a dual-permeability Monte Carlo simulation model for contaminant transport in fractured networks by genetic algorithm parameter identification. Stoch Environ Res Risk Assess 27:505–516.  https://doi.org/10.1007/s00477-012-0595-8 CrossRefGoogle Scholar
  8. Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central iowa soils. Soil Sci Soc Am J 58:1501.  https://doi.org/10.2136/sssaj1994.03615995005800050033x CrossRefGoogle Scholar
  9. Capilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31:907–927.  https://doi.org/10.1023/A:1007580902175 CrossRefGoogle Scholar
  10. Cassiraga EF, Fernàndez-Garcia D, Gómez-Hernández JJ (2005) Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock Mech Min Sci 42:756–764.  https://doi.org/10.1016/j.ijrmms.2005.03.013 CrossRefGoogle Scholar
  11. Corey AT (1977) Mechanics of heterogeneous fluids in porous media. Water Resources Publications, Fort Collins, CO, p 259Google Scholar
  12. Dagan G (1989) Flow and transport in porous formations. Springer, Berlin.  https://doi.org/10.1007/978-3-642-75015-1 CrossRefGoogle Scholar
  13. Dagan G (2004) On application of stochastic modeling of groundwater flow and transport. Stoch Environ Res Risk Assess.  https://doi.org/10.1007/s00477-004-0191-7 Google Scholar
  14. de Azevedo AAB, Pressinotti MMN, Massoli M (1981) Sedimentological studies of the Botucatu and Pirambóia formations in the region of Santa Rita do Passa Quatro (In portuguese). Rev do Inst Geológico 2:31–38.  https://doi.org/10.5935/0100-929X.19810003 CrossRefGoogle Scholar
  15. Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91:248–257.  https://doi.org/10.1016/j.chemosphere.2012.10.105 CrossRefGoogle Scholar
  16. Diersch H-JG (2014) Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin.  https://doi.org/10.1007/978-3-642-38739-5 Google Scholar
  17. Dippenaar MA (2014) Porosity reviewed: quantitative multi-disciplinary understanding, recent advances and applications in vadose zone hydrology. Geotech Geol Eng 32:1–19.  https://doi.org/10.1007/s10706-013-9704-9 CrossRefGoogle Scholar
  18. Fagundes JRT, Zuquette LV (2011) Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environ Earth Sci 62:831–845.  https://doi.org/10.1007/s12665-010-0570-y CrossRefGoogle Scholar
  19. Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, p 463Google Scholar
  20. Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Impact of upscaling on solute transport: Traveltimes, scale dependence of dispersivity, and propagation of uncertainty. Water Resour Res.  https://doi.org/10.1029/2005WR004727 Google Scholar
  21. Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández JJ (2009) Upscaling transport with mass transfer models: mean behavior and propagation of uncertainty. Water Resour Res.  https://doi.org/10.1029/2009WR007764 Google Scholar
  22. Feyen L, Gómez-Hernández JJ, Ribeiro PJ, Beven KJ, De Smedt F (2003a) A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water Resour Res.  https://doi.org/10.1029/2002WR001544 Google Scholar
  23. Feyen L, Ribeiro PJ, Gómez-Hernández JJ, Beven KJ, De Smedt F (2003b) Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations. J Hydrol 271:156–170.  https://doi.org/10.1016/S0022-1694(02)00314-1 CrossRefGoogle Scholar
  24. Forsythe GE, Malcolm MA, Moler CB (1976) Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs, p 259Google Scholar
  25. Freeze R, Cherry J (1979) Groundwater. PrenticeHall Inc, Englewood cliffs, p 604Google Scholar
  26. Frippiat CC, Holeyman AE (2008) A comparative review of upscaling methods for solute transport in heterogeneous porous media. J Hydrol 362:150–176.  https://doi.org/10.1016/j.jhydrol.2008.08.015 CrossRefGoogle Scholar
  27. Fu J, Gómez-Hernández JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J Hydrol 364:328–341.  https://doi.org/10.1016/j.jhydrol.2008.11.014 CrossRefGoogle Scholar
  28. Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180.  https://doi.org/10.1029/WR019i001p00161 CrossRefGoogle Scholar
  29. Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974.  https://doi.org/10.1029/92WR00607 CrossRefGoogle Scholar
  30. Giacheti HL, Rohm SA, Nogueira JB, Cintra JCA (1993) Geotechnical properties of the Cenozoic sediment (in protuguese). In: Albiero JH, Cintra JCA (eds) Soil from the interior of São Paulo. ABMS, Sao Paulo, pp 143–175Google Scholar
  31. Gómez-Hernandez JJ (1990) A stochastic approach to the simulation of block conductivity fields conditional upon data measured at a smaller scale. Stanford University, StanfordGoogle Scholar
  32. Gómez-Hernández JJ, Gorelick SM (1989) Effective groundwater model parameter values: influence of spatial variabiity of hydraulic conductivity, leackance, and recharge. Water Resour Res 25:405–419CrossRefGoogle Scholar
  33. Gómez-Hernández JJ, Journel A (1993) Joint sequential simulation of multigaussian fields. In: Geostatistics Tróia’92. pp 85–94.  https://doi.org/10.1007/978-94-011-1739-5_8
  34. Gómez-Hernández JJ, Wen X-H (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8:19–55.  https://doi.org/10.1007/BF01581389 CrossRefGoogle Scholar
  35. Gómez-Hernández JJ, Fu J, Fernandez-Garcia D (2006) Upscaling retardation factors in 2-D porous media. In: Bierkens MFP, Gehrels JC, Kovar K (eds) Calibration and reliability in groundwater modelling: from uncertainty to decision making: proceedings of the ModelCARE 2005 conference held in The Hague, The Netherlands, 6–9 June, 2005. IAHS Publication, pp 130–136Google Scholar
  36. Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45.  https://doi.org/10.1016/S0016-7061(98)00078-0 CrossRefGoogle Scholar
  37. Jarvis NJ (2007) A review of non-equilibrium water fl ow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546.  https://doi.org/10.4141/cjss2011-050 CrossRefGoogle Scholar
  38. Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manag 91:897–905.  https://doi.org/10.1016/j.jenvman.2009.11.006 CrossRefGoogle Scholar
  39. Journel AG, Gomez-Hernandez JJ (1993) Stochastic imaging of the wilmington clastic sequence. SPE Form Eval 8:33–40.  https://doi.org/10.2118/19857-PA CrossRefGoogle Scholar
  40. Journel A, Deutsch C, Desbarats A (1986) Power averaging for block effective permeability. Proc SPE Calif Reg Meet.  https://doi.org/10.2118/15128-MS Google Scholar
  41. Kronberg BI, Fyfe WS, Leonardos OH, Santos AM (1979) The chemistry of some Brazilian soils: element mobility during intense weathering. Chem Geol 24:211–229.  https://doi.org/10.1016/0009-2541(79)90124-4 CrossRefGoogle Scholar
  42. Lake LW (1988) The origins of anisotropy (includes associated papers 18394 and 18458). J Pet Technol 40:395–396.  https://doi.org/10.2118/17652-PA CrossRefGoogle Scholar
  43. Lawrence AE, Rubin Y (2007) Block-effective macrodispersion for numerical simulations of sorbing solute transport in heterogeneous porous formations. Adv Water Resour 30:1272–1285.  https://doi.org/10.1016/j.advwatres.2006.11.005 CrossRefGoogle Scholar
  44. Lemke LD, Barrack WA II, Abriola LM, Goovaerts P (2004) Matching solute breakthrough with deterministic and stochastic aquifer models. Groundwater 42:920–934CrossRefGoogle Scholar
  45. Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404:278–293.  https://doi.org/10.1016/j.jhydrol.2011.05.001 CrossRefGoogle Scholar
  46. Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34:478–489.  https://doi.org/10.1016/j.advwatres.2011.01.001 CrossRefGoogle Scholar
  47. Logsdon Keller KE, Moorman TB (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695.  https://doi.org/10.2136/sssaj2002.6860 CrossRefGoogle Scholar
  48. Lourens A, van Geer FC (2016) Uncertainty propagation of arbitrary probability density functions applied to upscaling of transmissivities. Stoch Environ Res Risk Assess 30:237–249.  https://doi.org/10.1007/s00477-015-1075-8 CrossRefGoogle Scholar
  49. Mahapatra IC, Singh KN, Pillai KG, Bapat SR (1985) Rice soils and their management. Indian J Agron 30:R1–R41Google Scholar
  50. Morakinyo JA, Mackay R (2006) Geostatistical modelling of ground conditions to support the assessment of site contamination. Stoch Environ Res Risk Assess 20:106–118.  https://doi.org/10.1007/s00477-005-0015-4 CrossRefGoogle Scholar
  51. Moslehi M, de Barros FPJ, Ebrahimi F, Sahimi M (2016) Upscaling of solute transport in disordered porous media by wavelet transformations. Adv Water Resour 96:180–189.  https://doi.org/10.1016/j.advwatres.2016.07.013 CrossRefGoogle Scholar
  52. Osinubi KJ, Nwaiwu CM (2005) Hydraulic conductivity of compacted lateritic soil. J Geotech Geoenviron Eng 131:1034–1041.  https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1034) CrossRefGoogle Scholar
  53. Remy N (2004) SGeMS: stanford geostatistical modeling software. Softw Man.  https://doi.org/10.1007/978-1-4020-3610-1_89 Google Scholar
  54. Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20:253–278.  https://doi.org/10.1016/S0309-1708(96)00050-4 CrossRefGoogle Scholar
  55. Robin MJL, Sudicky EA, Gillham RW, Kachanoski RG (1991) Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian forces base borden aquifer. Water Resour Res 27:2619–2632.  https://doi.org/10.1029/91WR01107 CrossRefGoogle Scholar
  56. Salamon P, Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res.  https://doi.org/10.1029/2006WR005522 Google Scholar
  57. Sánchez-Vila X, Carrera J, Girardi JP (1996) Scale effects in transmissivity. J Hydrol 183:1–22.  https://doi.org/10.1016/S0022-1694(96)80031-X CrossRefGoogle Scholar
  58. Scheibe T, Yabusaki S (1998) Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour 22:223–238.  https://doi.org/10.1016/S0309-1708(98)00014-1 CrossRefGoogle Scholar
  59. Selvadurai PA, Selvadurai APS (2014) On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos Mag 94:2318–2338.  https://doi.org/10.1080/14786435.2014.913111 CrossRefGoogle Scholar
  60. Shackelford CD (1994) Critical concepts for column testing. J Geotech Eng 120:1804–1828.  https://doi.org/10.1016/0148-9062(95)96996-O CrossRefGoogle Scholar
  61. Šimůnek J, van Genuchten MT, Šejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Riverside, CaliforniaGoogle Scholar
  62. Taskinen A, Sirviö H, Bruen M (2008) Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: linear mixed model approach. Stoch Environ Res Risk Assess 22:67–82.  https://doi.org/10.1007/s00477-006-0099-5 CrossRefGoogle Scholar
  63. Tuli A, Hopmans JW, Rolston DE, Moldrup P (2005) Comparison of air and water permeability between disturbed and undisturbed soils. Soil Sci Soc Am J 69:1361.  https://doi.org/10.2136/sssaj2004.0332 CrossRefGoogle Scholar
  64. Tyukhova AR, Willmann M (2016) Conservative transport upscaling based on information of connectivity. Water Resour Res 52:6867–6880.  https://doi.org/10.1002/2015WR018331 CrossRefGoogle Scholar
  65. van Genuchten MTh (1980) Determining transport parameters from solute displacement experiments. Research Report 118. U.S. Salinity Lab., Riverside, CAGoogle Scholar
  66. Vanderborght J, Timmerman A, Feyen J (2000) Solute transport for steady-state and transient flow in soils with and without macropores. Soil Sci Soc Am J 64:1305–1317.  https://doi.org/10.2136/sssaj2000.6441305x CrossRefGoogle Scholar
  67. Vanmarcke E (2010) Random fields: analysis and synthesis. World Scientific. MIT Press, Cambridge, MA, p 364CrossRefGoogle Scholar
  68. Vishal V, Leung JY (2017) Statistical scale-up of 3D particle-tracking simulation for non-Fickian dispersive solute transport modeling. Environ Res Risk Assess, Stoch.  https://doi.org/10.1007/s00477-017-1501-1 Google Scholar
  69. Wen X-H, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183:ix–xxxii.  https://doi.org/10.1016/S0022-1694(96)80030-8 CrossRefGoogle Scholar
  70. Wen XH, Gómez-Hernández JJ (1998) Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models. J Contam Hydrol 30:129–156.  https://doi.org/10.1016/S0169-7722(97)00035-1 CrossRefGoogle Scholar
  71. Wen XH, Capilla JE, Deutsch CV, Gómez-Hernández JJ, Cullick AS (1999) A program to create permeability fields that honor single-phase flow rate and pressure data. Comput Geosci 25:217–230.  https://doi.org/10.1016/S0098-3004(98)00126-5 CrossRefGoogle Scholar
  72. Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: the soil orders. Elsevier, Amsterdam, pp 83–116Google Scholar
  73. Willmann M, Carrera J, Guadagnini A (2006) Block-upscaling of transport in heterogeneous aquifers. h2ogeo.upc.edu 1–7Google Scholar
  74. Xu Z, Meakin P (2013) Upscaling of solute transport in heterogeneous media with non-uniform flow and dispersion fields. Appl Math Model 37:8533–8542.  https://doi.org/10.1016/j.apm.2013.03.070 CrossRefGoogle Scholar
  75. Zech A, Attinger S, Cvetkovic V, Dagan G, Dietrich P, Fiori A, Rubin Y, Teutsch G (2015) Is unique scaling of aquifer macrodispersivity supported by field data? Water Resour Res 51:7662–7679.  https://doi.org/10.1002/2015WR017220 CrossRefGoogle Scholar
  76. Zhou H, Li L, Gómez-Hernández JJ (2010) Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Comput Geosci 36:1224–1235.  https://doi.org/10.1016/j.cageo.2010.03.008 CrossRefGoogle Scholar
  77. Zhou H, Li L, Hendricks Franssen H-J, Gómez-Hernández JJ (2012) Pattern recognition in a bimodal aquifer using the normal-score ensemble Kalman filter. Math Geosci 44:169–185.  https://doi.org/10.1007/s11004-011-9372-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Geotechnical Engineering Department, São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Institute for Water and Environmental EngineeringUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations