Estimation of intensity–duration–frequency curves using max-stable processes

  • Hristos TyralisEmail author
  • Andreas Langousis
Original Paper


We present an approach to estimate intensity–duration–frequency (IDF) curves based on max-stable processes. The proposed method has been inspired by the seminal study of Nadarajah et al. (J R Stat Soc B 60(2):473–496, 1998), who used a multivariate extreme value distribution (MEVD) to estimate (IDF) curves from rainfall records. Max-stable processes are continuous extensions of MEVD (i.e. the marginal distributions of rainfall maxima at different durations are generalized extreme valued), which are more flexible, allow for extreme rainfall estimation at any arbitrary duration d (i.e. not just a discrete set, as is the case of MEVD), while preserving asymptotic dependencies. The latter characteristic of IDF estimates results from the combined effect of the statistical structure of rainfall (i.e. temporal dependencies), as well as the IDF construction process, which involves averaging of the original series to obtain rainfall maxima at different temporal resolutions. We apply the method to hourly precipitation data, and compare it to empirical estimates and the results produced by a semiparametric approach. Our findings indicate that max-stable processes fit well the statistical structure and inter-dependencies of annual rainfall maxima at different durations, produce slightly more conservative estimates relative to semiparametric methods, while allowing for extrapolations to durations and return periods beyond the range of the available data. The proposed statistical model is fully parametric and likelihood based, providing a theoretically consistent basis in solving the problem at hand.


Brown–Resnick process Generalized extreme value distribution Max-stable processes Multivariate extreme value distribution Pairwise likelihood Rainfall maxima 



We thank two anonymous reviewers for their useful suggestions.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material (345 kb)
Supplementary material 1(ZIP 346KB)


  1. Ahrens B (2003) Rainfall downscaling in an alpine watershed applying a multiresolution approach. J Geophys Res 108(D8):8388. Google Scholar
  2. Asadi P, Davison AC, Engelke S (2015) Extremes on river networks. Ann Appl Stat 9(4):2023–2050. Google Scholar
  3. Balcerak E (2013) Improving estimates of extreme snowfalls in a spatial context. EOS Trans AGU 94(14):140. Google Scholar
  4. Bernard MM (1932) Formulas for rainfall intensities of long durations. T Am Soc Civ Eng 96:592–624Google Scholar
  5. Blanchet J, Creutin JD (2017) Co-occurrence of extreme daily rainfall in the French mediterranean region. Water Resour Res 53(11):9330–9349. Google Scholar
  6. Blanchet J, Ceresetti D, Molinié G, Creutin JD (2016) A regional GEV scale-invariant framework for intensity–duration–frequency analysis. J Hydrol 540:82–95. Google Scholar
  7. Brown BM, Resnick SI (1977) Extreme values of independent stochastic processes. J Appl Probab 14(4):732–739. Google Scholar
  8. Castruccio S, Huser R, Genton MG (2016) High-order composite likelihood inference for max-stable distributions and processes. J Comput Graph Stat 25(4):1212–1229. Google Scholar
  9. Chan RKS, So MKP (2017) On the performance of the Bayesian composite likelihood estimation of max-stable processes. J Stat Comput Sim 87(15):2869–2881. Google Scholar
  10. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New YorkGoogle Scholar
  11. Coles GS (2001) An introduction to statistical modeling of extreme values. Springer, New York. Google Scholar
  12. Coles SG, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2(4):339–365. Google Scholar
  13. Cooley D, Naveau P, Poncet P (2006) Variograms for spatial max-stable random fields. In: Bertail P, Doukhan P, Soulier P (eds) Dependence in probability and statistics. Springer, New York, pp 373–390. Google Scholar
  14. Cooley D, Cisewski J, Erhardt RJ, Jeon S, Mannshardt E, Omolo BO, Sun Y (2012) A survey of spatial extremes: measuring spatial dependence and modeling spatial effects. Revstat-Stat J 10(1):135–165Google Scholar
  15. Cowpertwait PSP (1995) A generalized spatial-temporal model of rainfall based on a clustered point process. Proc R Soc A 450:163–175. Google Scholar
  16. Cowpertwait PSP (1998) A poisson-cluster model of rainfall: high-order moments and extreme values. Proc R Soc A 454:885–898. Google Scholar
  17. Davison AC, Gholamrezaee MM (2011) Geostatistics of extremes. Proc R Soc A.
  18. Davison AC, Huser R (2015) Statistics of extremes. Annu Rev Stat Appl 2:203–235. Google Scholar
  19. Davison AC, Padoan SA, Ribatet M (2012) Statistical modeling of spatial extremes. Stat Sci 27(2):161–186. Google Scholar
  20. Davison AC, Huser R, Thibaud E (2013) Geostatistics of dependent and asymptotically independent extremes. Math Geosci 45(5):511–529. Google Scholar
  21. De Haan L (1984) A spectral representation for max-stable processes. Ann Probab 12(4):1194–1204. Google Scholar
  22. Deidda R (2000) Rainfall downscaling in a space-time multifractal framework. Water Resour Res 36(7):1779–1794. Google Scholar
  23. Dey D, Roy D, Yan J (2016) Univariate extreme value analysis. In: Dey DK, Yan J (eds) Extreme value modeling and risk analysis, methods and applications. CRC Press, Boca Raton, pp 1–22Google Scholar
  24. Dombry C, Genton MG, Huser R, Ribatet M (2017) Full likelihood inference for max-stable data. arXiv:1703.08665v1
  25. Dowle M, Srinivasan A, Gorecki J, Short T, Lianoglou S, Antonyan E (2017) data.table: Extension of ‘data.frame’. R package version 1.10.4-3.
  26. Eagleson PS (1970) Dynamic hydrology. McGraw-Hill, New YorkGoogle Scholar
  27. El Adlouni S, Ouarda TBMJ (2010) Frequency analysis of extreme rainfall events. In: Testik FY, Gebremichael M (eds) Rainfall: state of the science, vol 191. AGU, Washington, DC, pp 171–188. Google Scholar
  28. El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(3):W03410. Google Scholar
  29. Entekhabi D, Rodriguez-Iturbe I, Eagleson PS (1989) Probabilistic representation of the temporal rainfall process by the modified Neyman–Scott rectangular pulses model: parameter estimation and validation. Water Resour Res 25(2):295–302. Google Scholar
  30. Fawcett L, Walshaw D (2013) Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach. J Appl Stat 41(5):959–976. Google Scholar
  31. Foufoula-Georgiou E, Lettenmaier DP (1986) Continuous-time versus discrete-time point process models for rainfall occurrence series. Water Resour Res 22(4):531–542. Google Scholar
  32. Gaume J, Eckert N, Chambon G, Naaim M, Bel L (2013) Mapping extreme snowfalls in the French Alps using max-stable processes. Water Resour Res 49(2):1079–1098. Google Scholar
  33. Genton MG, Ma Y, Sang H (2011) On the likelihood function of Gaussian max-stable processes. Biometrika 98(2):481–488. Google Scholar
  34. Gilleland E (2016) extRemes: Extreme value analysis. R package version 2.0-8.
  35. Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. Google Scholar
  36. Gomes DP, Neves MM (2015) Exploring R for modeling spatial extreme precipitation data. AIP Conf Proc 1618(1):547–550. Google Scholar
  37. Gomes DP, Neves MM, Moreira E (2016) An exploratory study of spatial annual maximum of monthly precipitation in the northern region of Portugal. Phys Chem Earth 94:77–84. Google Scholar
  38. Grolemund G, Wickham H (2011) Dates and times made easy with lubridate. J Stat Softw 40(3):1–25. Google Scholar
  39. Güntner A, Olsson J, Calver A, Gannon B (2001) Cascade-based disaggregation of continuous rainfall time series: the influence of climate. Hydrol Earth Syst Sci 5:145–164. Google Scholar
  40. Hao Z, Singh VP (2016) Review of dependence modeling in hydrology and water resources. Prog Phys Geog 40(4):549–578. Google Scholar
  41. Huser R, Davison AC (2013) Composite likelihood estimation for the Brown–Resnick process. Biometrika 100(2):511–518. Google Scholar
  42. Huser R, Wadsworth JL (2018) Modeling spatial processes with unknown extremal dependence class. J Am Stat Assoc. Google Scholar
  43. Innocenti S, Mailhot A, Frigon A (2017) Simple scaling of extreme precipitation in North America. Hydrol Earth Syst Sci 21:5823–5846. Google Scholar
  44. Koutsoyiannis D, Langousis A (2011) 2.02-Precipitation. In: Wilderer P, Uhlenbrook S (eds) Treatise on water science. Academic Press, Oxford, pp 27–77. Google Scholar
  45. Koutsoyiannis D, Kozonis D, Manetas A (1998) A mathematical framework for studying rainfall intensity–duration–frequency relationships. J Hydrol 206(1–2):118–135. Google Scholar
  46. Langousis A, Veneziano D (2007) Intensity–duration–frequency curves from scaling representations of rainfall. Water Resour Res 43(2):W02422. Google Scholar
  47. Langousis A, Veneziano D, Furcolo P, Lepore C (2009) Multifractal rainfall extremes: theoretical analysis and practical estimation. Chaos Soliton Fract 39(3):1182–1194. Google Scholar
  48. Langousis A, Carsteanu AA, Deidda R (2013) A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model. Stoch Environ Res Risk Assess 27(6):1525–1531. Google Scholar
  49. Langousis A, Mamalakis A, Puliga M, Deidda R (2016) Threshold detection for the generalized Pareto distribution: review of representative methods and application to the NOAA NCDC daily rainfall database. Water Resour Res 52(4):2659–2681. Google Scholar
  50. LeCam L (1961) A stochastic description of precipitation. In: Neyman J (ed) Proceedings of fourth Berkeley symposium on mathematical statistics and probability, vol 3. University of California Press, Berkeley, pp 165–176Google Scholar
  51. Lee Y, Yoon S, Murshed MS, Kim MK, Cho CH, Baek HJ, Park JS (2013) Spatial modeling of the highest daily maximum temperature in Korea via max-stable processes. Adv Atmos Sci 30(6):1608–1620. Google Scholar
  52. Lovejoy S, Schertzer D (1995) Multifractals and rain. In: Kundzewicz AW (ed) New uncertainty concepts in hydrology and hydrological modelling. Cambridge University Press, Cambridge, pp 61–103. Google Scholar
  53. Lucarini V, Faranda D, de Freitas ACGMM, de Freitas JMM, Holland M, Kuna T, Nicol M, Todd M, Vaienti S (2016) Extremes and recurrence in dynamical systems. Wiley, HobokenGoogle Scholar
  54. Mélèse V, Blanchet J, Molinié G (2018) Uncertainty estimation of intensity–duration–frequency relationships: a regional analysis. J Hydrol 558:579–591. Google Scholar
  55. Menabde M, Sivapalan M (2000) Modelling of rainfall time series and extremes using bounded random cascades and Levy-stable distributions. Water Resour Res 36(11):3293–3300. Google Scholar
  56. Menabde M, Harris D, Seed A, Austin G, Stow D (1997) Multiscaling properties of rainfall and bounded random cascades. Water Resour Res 33(12):2823–2830. Google Scholar
  57. Muller A, Bacro JN, Lang M (2008) Bayesian comparison of different rainfall depth–duration–frequency relationships. Stoch Environ Res Risk Assess 22(1):33–46. Google Scholar
  58. Nadarajah S, Anderson CW, Tawn JA (1998) Ordered multivariate extremes. J R Stat Soc B 60(2):473–496. Google Scholar
  59. Neves M, Gomes DP (2011) Geostatistics for spatial extremes. A case study of maximum annual rainfall in Portugal. Proc Environ Sci 7:246–251. Google Scholar
  60. Nicolet G, Eckert N, Morin S, Blanchet J (2015) Inferring spatio-temporal patterns in extreme snowfall in the French Alps using max-stable processes. Proc Environ Sci 26:24–31. Google Scholar
  61. Nicolet G, Eckert N, Morin S, Blanchet J (2016) Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change. J Geophys Res 121(14):8297–8310. Google Scholar
  62. Nicolet G, Eckert N, Morin S, Blanchet J (2017) A multi-criteria leave-two-out cross-validation procedure for max-stable process selection. Spat Stat 22(Part 1):107–128. Google Scholar
  63. Nikoloulopoulos AK, Joe H, Li H (2009) Extreme value properties of multivariate t copulas. Extremes 12(2):129–148. Google Scholar
  64. NOAA National Centers for Environmental Information (2017) Hourly precipitation data (HPD) network, version 1.0 Beta. Accessed 2 Dec. 2017
  65. Oesting M, Stein A (2018) Spatial modeling of drought events using max-stable processes. Stoch Environ Res Risk Assess 32(1):63–81. Google Scholar
  66. Oesting M, Schlather M, Friederichs P (2017) Statistical post-processing of forecasts for extremes using bivariate Brown–Resnick processes with an application to wind gusts. Extremes 20(2):309–332. Google Scholar
  67. Olinda RA, Blanchet J, dos Santos CAC, Ozaki VA, Ribeiro PJ Jr (2014) Spatial extremes modeling applied to extreme precipitation data in the state of Paraná. Hydrol Earth Syst Sci Discuss 11:12731–12764. Google Scholar
  68. Olsson J (1998) Evaluation of a scaling cascade model for temporal rainfall disaggregation. Hydrol Earth Syst Sci 2:19–30. Google Scholar
  69. Onibon H, Ouarda TBMJ, Barbet M, ST-Hilaire A, Bobée B, Bruneau P (2004) Regional frequency analysis of annual maximum daily precipitation in Quebec, Canada. Hydrolog Sci J 49(4):717–735. Google Scholar
  70. Onof C, Arnbjerg-Nielsen K (2009) Quantification of anticipated future changes in high resolution design rainfall for urban areas. Atmos Res 92(3):350–363. Google Scholar
  71. Onof C, Wheater HS (1993) Modelling of British rainfall using a random parameter Bartlett–Lewis rectangular pulse model. J Hydrol 149:67–95. Google Scholar
  72. Onof C, Wheater HS (1994) Improvements to the modeling of British rainfall using a modified random parameter Bartlett–Lewis rectangular pulses model. J Hydrol 157:177–195. Google Scholar
  73. Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling using poisson-cluster processes: a review of developments. Stoch Environ Res Risk Assess 14:384–411. Google Scholar
  74. Opitz T (2013) Extremal t processes: elliptical domain of attraction and a spectral representation. J Multivar Anal 122:409–413. Google Scholar
  75. Padoan SA (2013) Extreme dependence models based on event magnitude. J Multivar Anal 122:1–19. Google Scholar
  76. Padoan SA, Ribatet M, Sisson SA (2010) Likelihood-based inference for max-stable processes. J Am Stat Assoc 105(489):263–277. Google Scholar
  77. Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  78. Paulson KS, Baxter PD (2007) Downscaling of rain gauge time series by multiplicative beta cascade. J Geophys Res. Google Scholar
  79. Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J Geophys Res 101(D21):26347–26361. Google Scholar
  80. Raudkivi AJ (1979) Hydrology, an advanced introduction to hydrological processes and modelling. Pergamon Press, OxfordGoogle Scholar
  81. Reiss RD, Thomas M (2007) Statistical analysis of extreme values. Birkhäuser, Basel. Google Scholar
  82. Ribatet M (2013) Spatial extremes: max-stable processes at work. J Soc Fr Stat 154(2):156–177Google Scholar
  83. Ribatet M, Sedki M (2013) Extreme value copulas and max-stable processes. J Soc Fr Stat 154(1):138–150Google Scholar
  84. Ribatet M, Singleton R (2018) SpatialExtremes: modelling spatial extremes. R package version 2.0-6.
  85. Ribatet M, Cooley D, Davison AC (2012) Bayesian inference from composite likelihoods, with an application to spatial extremes. Stat Sin 22(2):813–845. Google Scholar
  86. Ribatet M, Dombry C, Oesting M (2016) Spatial extremes and max-stable processes. In: Dey DK, Yan J (eds) Extreme value modeling and risk analysis, methods and applications. CRC Press, Boca Raton, pp 179–194Google Scholar
  87. Rodriguez-Iturbe I, Cox DR, Isham V (1987) Some models for rainfall based on stochastic point processes. Proc R Soc A 410:269–298. Google Scholar
  88. Rodriguez-Iturbe I, Cox DR, Isham V (1988) A point process model for rainfall: further developments. Proc R Soc A 417:283–298. Google Scholar
  89. Rossi F, Villani P (1994) A project for regional analysis of floods in Italy. In: Rossi G, Harmancioglu N, Yevjevich V (eds) Coping with floods. NATO ASI series. Kluwer Academic Publishers, DordrechtGoogle Scholar
  90. Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment D (ed) Handbook of hydrology, Chapter 19. McGraw-Hill, New YorkGoogle Scholar
  91. Saunders K, Stephenson AG, Taylor PG, Karoly D (2017) The spatial distribution of rainfall extremes and the influence of El Niño Southern Oscillation. Weather Clim Extrem 18:17–28. Google Scholar
  92. Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling of multiplicative processes. J Geophys Res 92:9693–9714. Google Scholar
  93. Schlather M (2002) Models for stationary max-stable random fields. Extremes 5(1):33–44. Google Scholar
  94. Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156. Google Scholar
  95. Sebille Q, Fougères AL, Mercadier C (2017) Modeling extreme rainfall. A comparative study of spatial extreme value models. Spat Stat 21(A):187–208. Google Scholar
  96. Segers J (2012) Max-stable models for multivariate extremes. Revstat-Stat J 10(1):61–82Google Scholar
  97. Segond ML, Neokleous N, Makropoulos C, Onof C, Maksimovic C (2007) Simulation and spatial–temporal disaggregation of multi-site rainfall data for urban drainage applications. Hydrolog Sci J 52(5):917–935. Google Scholar
  98. Shaw EM (1983) Hydrology in practice. Van Nostrand Reinhold, BerkhireGoogle Scholar
  99. Sherman CW (1931) Frequency and intensity of excessive rainfall at Boston. T Am Soc Civ Eng 95:951–960Google Scholar
  100. Singh VP (1992) Elementary hydrology. Prentice-Hall, New JerseyGoogle Scholar
  101. Smith RL (1990) Max-stable processes and spatial extremes. Accessed 2 Dec. 2017
  102. Stephenson AG, Shaby BA, Reich BJ, Sullivan AL (2015) Estimating spatially varying severity thresholds of a forest fire danger rating system using max-stable extreme-event modeling. J Appl Meteorol Clim 54:395–407. Google Scholar
  103. Stephenson AG, Lehmann EA, Phatak A (2016) A max-stable process model for rainfall extremes at different accumulation durations. Weather Clim Extrem 13:44–53. Google Scholar
  104. Subramanya K (1984) Engineering hydrology. Tata McGraw-Hill, New DelhiGoogle Scholar
  105. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  106. Thibaud E, Aalto J, Cooley DS, Davison AC, Heikkinen J (2016) Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures. Ann Appl Stat 10(4):2303–2324. Google Scholar
  107. Tuszynski J (2014) caTools: tools: moving window statistics, GIF, Base64, ROC AUC, etc. R package version 1.17.1.
  108. Valencia D, Schaake JC (1972) A disaggregation model for time series analysis and synthesis, Report no. 149, Ralph M. Parsons Laboratory of Water Resources and Hydrodynamics, MIT, CambridgeGoogle Scholar
  109. Valencia D, Schaake JC (1973) Disaggregation processes in stochastic hydrology. Water Resour Res 9(3):211–219. Google Scholar
  110. Van de Vyver H (2015) Bayesian estimation of rainfall intensity–duration–frequency relationships. J Hydrol 529(Part 3):1451–1463. Google Scholar
  111. Varin C, Vidoni P (2005) A note on composite likelihood inference and model selection. Biometrika 92(3):519–528. Google Scholar
  112. Velghe T, Troch PA, De Troch FP, Van de Velde J (1994) Evaluation of cluster-based rectangular pulses point process models for rainfall. Water Resour Res 30(10):2847–2857. Google Scholar
  113. Veneziano D, Furcolo P (2002) Multifractality of rainfall and intensity–duration–frequency curves. Water Resour Res 38(12):1306–1317. Google Scholar
  114. Veneziano D, Iacobellis V (2002) Multiscaling pulse representation of temporal rainfall. Water Resour Res 38(8):13-1–13-13. Google Scholar
  115. Veneziano D, Langousis A (2005) The areal reduction factor a multifractal analysis. Water Resour Res 41(7):W07008. Google Scholar
  116. Veneziano D, Langousis A (2010) Scaling and fractals in hydrology. In: Sivakumar B, Berndtsson R (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific, Singapore, pp 107–243. Google Scholar
  117. Veneziano D, Lepore C (2012) The scaling of temporal rainfall. Water Resour Res 48(8):W08516. Google Scholar
  118. Veneziano D, Yoon S (2013) Rainfall extremes, excesses, and intensity–duration–frequency curves: a unified asymptotic framework and new nonasymptotic results based on multifractal measures. Water Resour Res 49(7):4320–4334. Google Scholar
  119. Veneziano D, Furcolo P, Iacobellis V (2002) Multifractality of iterated random pulse processes with pulse amplitudes generated by a random cascade. Fractals 10(2):1–11. Google Scholar
  120. Veneziano D, Furcolo P, Iacobellis V (2006a) Imperfect scaling of time and space-time rainfall. J Hydrol 322(1–4):105–119. Google Scholar
  121. Veneziano D, Langousis A, Furcolo P (2006b) Multifractality and rainfall extremes: a review. Water Resour Res 42(6):W06D15. Google Scholar
  122. Veneziano D, Lepore C, Langousis A, Furcolo P (2007) Marginal methods of intensity–duration–frequency estimation in scaling and nonscaling rainfall. Water Resour Res 43(10):W10418. Google Scholar
  123. Veneziano D, Langousis A, Lepore C (2009) New asymptotic and preasymptotic results on rainfall maxima from multifractal theory. Water Resour Res 45(11):W11421. Google Scholar
  124. Verhoest N, Troch PA, De Troch FP (1997) On the applicability of Bartlett–Lewis rectangular pulses models in the modeling of design storms at a point. J Hydrol 202(1–4):108–120. Google Scholar
  125. Wadsworth JL, Tawn JA (2012) Dependence modelling for spatial extremes. Biometrika 99(2):253–272. Google Scholar
  126. Wanielista M (1990) Hydrology and water quality control. Wiley, New YorkGoogle Scholar
  127. Warnes GR, Bolker B, Gorjanc G, Grothendieck G, Korosec A, Lumley T, MacQueen D, Magnusson A, Rogers J, et al (2017) gdata: Various R programming tools for data manipulation. R package version 2.18.0.
  128. Waymire E, Gupta VK (1981a) The mathematical structure of rainfall representations: 1. A review of the stochastic rainfall models. Water Resour Res 17(5):1261–1272. Google Scholar
  129. Waymire E, Gupta VK (1981b) The mathematical structure of rainfall representations: 2. A review of the theory of point processes. Water Resour Res 17(5):1273–1285. Google Scholar
  130. Waymire E, Gupta VK (1981c) The mathematical structure of rainfall representations: 3. Some applications of the point process theory to rainfall processes. Water Resour Res 17(5):1287–1294. Google Scholar
  131. Weibull W (1939) A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademien 151:45–55Google Scholar
  132. Westra S, Sisson SA (2011) Detection of non-stationarity in precipitation extremes using a max-stable process model. J Hydrol 406(1–2):119–128. Google Scholar
  133. Wickham H (2016) ggplot2. Springer, Berlin. Google Scholar
  134. Wickham H (2017) scales: Scale functions for visualization. R package version 0.5.0.
  135. Wickham H, Chang W (2018) devtools: Tools to Make Developing R Packages Easier. R package version 1.13.5.
  136. Willems P (2001) A spatial rainfall generator for small spatial scales. J Hydrol 252(1–4):126–144. Google Scholar
  137. Xie Y (2014) knitr: A comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD (eds) Implementing reproducible computational research. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  138. Xie Y (2015) Dynamic documents with R and knitr, 2nd edn. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  139. Xie Y (2018) knitr: A general-purpose package for dynamic report generation in R. R package version 1.20.
  140. Xu G, Genton MG (2016) Tukey max-stable processes for spatial extremes. Spat Stat 18(Part B):431–443. Google Scholar
  141. Yoon S, Kumphon B, Park JS (2015) Spatial modeling of extreme rainfall in northeast Thailand. J Appl Stat 42(8):1813–1828. Google Scholar
  142. Zhang Q, Xiao M, Li J, Singh VP, Wang Z (2014a) Topography-based spatial patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes. J Hydrol 512:229–239. Google Scholar
  143. Zhang Q, Xiao M, Singh VP, Chen YD (2014b) Max-stable based evaluation of impacts of climate indices on extreme precipitation processes across the Poyang Lake basin, China. Glob Planet Change 122:271–281. Google Scholar
  144. Zheng F, Thibaud E, Leonard M, Westra S (2015) Assessing the performance of the independence method in modeling spatial extreme rainfall. Water Resour Res 51(9):7744–7758. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hellenic Air ForceEleusisGreece
  2. 2.Department of Civil Engineering, School of EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations