Advertisement

Trees

pp 1–10 | Cite as

Leaf orientation measurement in a mixed hemiboreal broadleaf forest stand using terrestrial laser scanner

  • Andres KuuskEmail author
Original Article
  • 4 Downloads

Abstract

Orientation of leaves in a mature hemiboreal mixed broadleaf stand (the Järvselja RAMI birch stand) was measured using the high-density point cloud of terrestrial laser scanner hits. Leaf normal distribution in the upper part of crowns of tall aspen and birch trees is almost spherical, and slightly planophile in the lower part of crowns. Leaves of alder trees are rather planophile in the upper part of crowns, and strongly planophile in the lower part of crowns. Lime and maple trees form the lower layer of trees in the stand. Their crowns are mainly in shade, and therefore, their leaf orientation is strongly planophile throughout the whole crown. Parameters of beta distribution and elliptical distribution are provided for the approximation of empirical distributions. The acquired information about leaf orientation can improve performance assessment of radiative transfer models.

Keywords

Terrestrial laser scanner Foliage orientation Broadleaf forest 

Notes

Acknowledgements

This study was made possible by funding support from the Estonian Research Council, as project SF0180009Bs11, under Grants PUT232, PUT1355, and Mobilitas Pluss MOBERC-11. I am very grateful to colleagues Drs Silja Märdla, Mait Lang, and Jan Pisek for collecting data and discussing the manuscript. I would like to thank the Government of Estonian for continuously keeping up our hopes about raising research funding to 1% of GDP.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool. In: Scarano V, Chiara RD, Erra U (eds) Eurographics Italian chapter conference, The Eurographics Association.  https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
  2. Danson F, Hetherington D, Morsdorf F, Koetz B, Allgöwer B (2007) Forest canopy gap fraction from terrestrial laser scanning. IEEE Geosci Remote Sens Lett 4(1):157–160CrossRefGoogle Scholar
  3. Disney M (2018) Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. New Phytol.  https://doi.org/10.1111/nph.15517 CrossRefPubMedGoogle Scholar
  4. Goel N, Strebel D (1984) Simple beta distribution representation of leaf orietation in vegetation canopies. Agron J 76(5):800–802CrossRefGoogle Scholar
  5. Hancock S, Essery R, Reid T, Carle J, Baxter R, Rutter N, Huntley B (2014) Characterising forest gap fraction with terrestrial lidar and photography: an examination of relative limitations. Agric For Meteorol 189–190:105–114CrossRefGoogle Scholar
  6. Hosoi F, Omasa K (2015) Estimating leaf inclination angle distribution of broad-leaved trees in each part of the canopies by a high-resolution portable scanning lidar. J Agric Meteorol 71:136–141.  https://doi.org/10.2480/agrmet.D-14-00049 CrossRefGoogle Scholar
  7. Jin S, Tamura M, Susaki J (2016) A new approach to retrieve leaf normal distribution using terrestrial laser scanners. J For Res 27(3):631–638.  https://doi.org/10.1007/s11676-015-0204-z CrossRefGoogle Scholar
  8. Kuusk A (1995) A fast, invertible canopy reflectance model. Remote Sens Environ 51(3):342–350CrossRefGoogle Scholar
  9. Kuusk A, Lang M, Kuusk J (2013) Database of optical and structural data for the validation of forest radiative transfer models. In: Kokhanovsky A (ed) Light scattering reviews, vol 7. Springer, Berlin, pp 109–148CrossRefGoogle Scholar
  10. Kuusk A, Pisek J, Lang M, Märdla S (2018) Estimation of gap fraction and foliage clumping in forest canopies. Remote Sens 10(7):1153.  https://doi.org/10.3390/rs10071153 CrossRefGoogle Scholar
  11. LG (2011) Leica scanstation C10. The all-in-one laser scanner for any application. Leica Geosystems AG, Heerbrugg, SwitzerlandGoogle Scholar
  12. Lovell J, Jupp D, Culvenor D, Coops N (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Remote Sens 29(5):607–622CrossRefGoogle Scholar
  13. McNeil B, Pisek J, Lepisk H, Flamenco E (2016) Measuring leaf angle distribution in broadleaf canopies using UAVs. Agric For Meteorol 218–219:204–208CrossRefGoogle Scholar
  14. Nilson T (1968) On the optimal geometrical arrangement of foliage in the plant cover. In: The radiation regime in vegetation canopy. Institute of Physics and Astronomy, Estonian Academy of Sciences, Tartu, pp 112–146 (Russian) Google Scholar
  15. Nilson T (1971) A theoretical analysis of the frequency of gaps in plant stands. Agric Meteorol 8:25–38CrossRefGoogle Scholar
  16. PCL (2018) Point cloud library, electronic document. http://pointclouds.org
  17. PCL, Normals (2018) Estimating surface normals in a pointcloud, electronic document. http://pointclouds.org/documentation/tutorials/normal_estimation.php
  18. Pisek J, Ryu Y, Alikas K (2011) Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies. Trees 25:919–924CrossRefGoogle Scholar
  19. Pisek J, Sonnentag O, Richardson A, Mõttus M (2013) Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species. Agric For Meteorol 169:186–194CrossRefGoogle Scholar
  20. Raabe K, Pisek J, Sonnentag O, Annuk K (2015) Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agric For Meteorol 214–215:2–11CrossRefGoogle Scholar
  21. RAMI-IV (2009) RAdiation transfer model intercomparison (RAMI). Järvselja Birch Stand (Summer). http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-IV.php
  22. Ramirez F, Armitage R, Danson F (2013) Testing the application of terrestrial laser scanning to measure forest canopy gap fraction. Remote Sens 5:3037–3056.  https://doi.org/10.3390/rs5063037 CrossRefGoogle Scholar
  23. Raumonen P, Casella E, Calders K, Murphy S, Åkerblom M, Kaasalainen M (2015) Massive-scale tree modelling from TLS data. In: ISPRS annals of photogrammetry, remote sensing and spatial information sciences, II-3/W4, pp 189–196Google Scholar
  24. Richard A, Lang G (1990) An instrument for measuring canopy structure. Remote Sens Rev 5(1):61–71CrossRefGoogle Scholar
  25. Ross J (1981) The radiation regime and architecture of plant stands. Dr. W. Junk Publishers, The HagueCrossRefGoogle Scholar
  26. Ryu Y, Nilson T, Kobayashi H, Sonnentag O, Law B, Baldocchi D (2010) On the correct estimation of effective leaf area index: does it reveal information on clumping effects? Agric For Meteorol 150(3):463–472CrossRefGoogle Scholar
  27. Seidel D, Fleck S, Leuschner C (2012) Analyzing forest canopies with ground-based laser scanning: a comparison with hemispherical photography. Agric For Meteorol 154:1–8CrossRefGoogle Scholar
  28. Vicari M (2018b) TLSeparation. Electronic document. https://tlseparation.github.io/documentation/
  29. Vicari M, Pisek J, Disney M (2019) New estimates of leaf angle distribution from terrestrial LiDAR: comparison with measured and modelled estimates from nine broadleaf tree species. Agric For Meteorol 264:322–333.  https://doi.org/10.1016/j.agrformet.2018.10.021 CrossRefGoogle Scholar
  30. Widlowski JL, Mio C, Disney M, Adams J, Andredakis I, Atzberger C, Brennan J, Busetto L, Chelle M, Ceccherini G, Colombo R, Côté JF, Eenmäe A, Essery R, Gastellu-Etchegorry JP, Gobron N, Grau E, Haverd V, Homolová L, Huang H, Hunt L, Kobayashi H, Koetz B, Kuusk A, Kuusk J, Lang M, Lewis P, Lovell J, Malenovský Z, Meroni M, Morsdorf F, Mõttus M, Ni-Meister W, Pinty B, Rautiainen M, Schlerf M, Somers B, Stuckens J, Verstraete M, Yang W, Zhao F, Zenone T (2015) The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens Environ 169:418–437.  https://doi.org/10.1016/j.rse.2015.08.016 CrossRefGoogle Scholar
  31. Zheng G, Moskal L (2012) Leaf orientation retrieval from terrestrial laser scanning (TLS) data. IEEE Trans Geosci Remote Sens 50(10):3970–3979.  https://doi.org/10.1109/TGRS.2012.2188533 CrossRefGoogle Scholar
  32. Zygmunt M (2013) The testing of PCL: an open-source library for point cloud processing. Geomat Landmanag Landsc 3:105–115.  https://doi.org/10.15576/GLL/2013.3.105 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tartu Observatory, Faculty of Science and TechnologyUniversity of TartuTõravereEstonia

Personalised recommendations