Advertisement

Trees

pp 1–20 | Cite as

Less is more: Effects of competition reduction and facilitation on intra-annual (basal area) growth of mature European beech

  • Jérôme MetzEmail author
  • Peter Annighöfer
  • Katharina Westekemper
  • Peter Schall
  • Ernst-Detlef Schulze
  • Christian Ammer
Original Article
  • 6 Downloads

Abstract

Key Message

Species-specific neighborhood identity effects such as competition reduction or facilitation can positively influence growth patterns of Fagus sylvatica at a given site, but are not strong enough to overcome fundamental growth–environment interactions of European beech.

Abstract

Competition and growth dynamics operating within multi-species tree stands are more complex than interactions within evenly aged monocultures. In three major geographic regions of Germany, we used electronic dendrometers to analyze the impact of neighborhood identity effects such as competition reduction or facilitation on the intra-annual stem growth patterns of Fagus sylvatica (European beech) on various time scales (day to year). Although not consistently significant, within the same study site average basal area growth relative to initial values was always higher at the ends of the growing seasons if subject tree beeches were exposed exclusively to interspecific competition. Weibull growth curves were fitted to rescaled dendrometer profiles. Analysis of the resulting Weibull scale (T) and shape (m) parameter estimates indicated the following: within the same growing area, initial growth trends of beeches in either con- or allo-specific competitive neighborhoods did not differ significantly, but subject trees exclusively surrounded by Pinus sylvestris benefited through extended duration of growth. These findings are reflected in the results for onset, cessation and total duration of wood formation calculated from inverse Weibull functions. Results of this study tend to confirm the assumption that interspecific interference induces higher daily stem growth rates of beech throughout the entire growing season. However, although particular species-specific neighborhood identity or mixing effects can indeed positively influence growth patterns of Fagus sylvatica at a given site, they are not strong enough to overcome fundamental growth–environment interactions of European beech.

Keywords

Beech Competition Mixing effects Electronic dendrometer Intra-annual growth dynamics 

Notes

Acknowledgements

We thank the managers of the three Exploratories; Swen Renner, Kirsten Reichel-Jung, Sonja Gockel, Kerstin Wiesner, Katrin Lorenzen, Andreas Hemp, Martin Gorke, and all former managers for their work in maintaining the plot and project infrastructure; Simone Pfeiffer, Maren Gleisberg, Christiane Fischer for providing support through the central office, Michael Owonibi for managing the central database, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, Francois Buscot, Wolfgang W. Weisser and the late Elisabeth Kalko for their roles in setting up the Biodiversity Exploratories project (together with co-author Ernst-Detlef Schulze). The work was funded by the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (Grant no: Am-149/7-1). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to §72 BbgNatSchG). We are very grateful to Karl-Heinz Heine, Andreas Parth, Michael Unger and Ulrike Westphal for assisting with field work. Thanks to Ulrich Pruschitzki and Silke Schweighoefer (UP Umweltanalytische Produkte GmbH) for their technical support with dendrometer equipment as well as raw data preparation. We further acknowledge the linguistic corrections made by Kathleen Regan (USA) and very helpful comments by two reviewers.

Funding

The work has been funded by the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (Grant no: Am-149/7-1).

Supplementary material

468_2019_1894_MOESM1_ESM.docx (531 kb)
Supplementary material 1 (DOCX 531 kb)

References

  1. Ammer C (2017) Unraveling the importance of inter- and intraspecific competition for the adaptation of forests to climate change. In: Cánovas FM, Lüttge U, Matyssek R (eds) Progress in botany, vol 78. Springer, Cham, pp 345–367Google Scholar
  2. Ammer C (2019) Diversity and forest productivity in a changing climate. New Phytol 221:50–66.  https://doi.org/10.1111/nph.15263 CrossRefPubMedGoogle Scholar
  3. Aussenac G (2000) Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301.  https://doi.org/10.1051/forest:2000119 CrossRefGoogle Scholar
  4. Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210.  https://doi.org/10.1093/treephys/22.17.1201 CrossRefPubMedGoogle Scholar
  5. Beck W (2005) Investigation of the interactions between pine and beech in two-layer mixed stands using methods of tree-ring research. In: Gärtner H, Esper J, Schleser G (eds) TRACE - Tree rings in archaeology, climatology and ecology, Vol. 3: Proceedings of the Dendrosymposium 2004. Schriften des Forschungszentrums Jülich, Reihe Umwelt, vol 53, pp 8–16Google Scholar
  6. Belyea RM, Fraser DA, Rose AH (1951) Seasonal growth of some trees in Ontario. Forest Chron 27:300–305.  https://doi.org/10.5558/tfc27300-4 CrossRefGoogle Scholar
  7. Bolte A, Villanueva I (2006) Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur J For Res 125:15–26.  https://doi.org/10.1007/s10342-005-0075-5 CrossRefGoogle Scholar
  8. Bolte A, Kampf F, Hilbrig L (2013) Space sequestration below ground in old-growth spruce-beech forests—signs for facilitation? Front Plant Sci.  https://doi.org/10.3389/fpls.2013.00322 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bonnemann A (1939) Der gleichaltrige Mischbestand von Kiefer und Buche. Mitt Forstwirtsch u Forstwiss, vol 10. Schaper, HannoverGoogle Scholar
  10. Bosela M, Tobin B, Šebeň V, Petráš R, Larocque GR (2015) Different mixtures of Norway spruce, silver fir, and European beech modify competitive interactions in central European mature mixed forests. Can J For Res 45:1577–1586.  https://doi.org/10.1139/cjfr-2015-0219 CrossRefGoogle Scholar
  11. Bouriaud O, Bréda N, Moguédec G, Nepveu G (2004) Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18:264–276.  https://doi.org/10.1007/s00468-003-0303-x CrossRefGoogle Scholar
  12. Bouriaud O, Leban JM, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660CrossRefPubMedGoogle Scholar
  13. Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306CrossRefPubMedGoogle Scholar
  14. Brunner E, Munzel U (2000) The nonparametric Behrens–Fisher problem: asymptotic theory and a small-sample approximation. Biometrical J 42:17–25CrossRefGoogle Scholar
  15. Condés S, Del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. Forest Ecol Manag 292:86–95.  https://doi.org/10.1016/j.foreco.2012.12.013 CrossRefGoogle Scholar
  16. Čufar K, Prislan P, de Luis M, Gričar J (2008a) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758.  https://doi.org/10.1007/s00468-008-0235-6 CrossRefGoogle Scholar
  17. Čufar K, Prislan P, Gričar J (2008b) Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Res Slovakia 53:1–12Google Scholar
  18. Cuny HE, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625.  https://doi.org/10.1093/treephys/tps039 CrossRefPubMedGoogle Scholar
  19. Curt T, Prévosto B (2003) Root biomass and rooting profile of naturally regenerated beech in mid-elevation Scots pine woodlands. Plant Ecol 167:269–282.  https://doi.org/10.1023/A:1023904912712 CrossRefGoogle Scholar
  20. Deslauriers A, Morin H, Urbinati C, Carrer M (2003) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17:477–484.  https://doi.org/10.1007/s00468-003-0260-4 CrossRefGoogle Scholar
  21. Deslauriers A, Rossi S, Anfodillo T (2007) Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia 25:113–124.  https://doi.org/10.1016/j.dendro.2007.05.003 CrossRefGoogle Scholar
  22. Deslauriers A, Rossi S, Turcotte A, Morin H, Krause C (2011) A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia 29:151–161.  https://doi.org/10.1016/j.dendro.2011.01.008 CrossRefGoogle Scholar
  23. Deutscher Wetterdienst, Offenbach/Germany (2014). http://www.dwd.de/. Accessed 16 Apr 2014
  24. Diaconu D, Kahle H-P, Spiecker H (2015) Tree- and stand-level thinning effects on growth of European beech (Fagus sylvatica L.) on a northeast- and a southwest-facing slope in southwest Germany. Forests 6:3256–3277.  https://doi.org/10.3390/f6093256 CrossRefGoogle Scholar
  25. Dieler J, Pretzsch H (2013) Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. Forest Ecol Manag 295:97–108.  https://doi.org/10.1016/j.foreco.2012.12.049 CrossRefGoogle Scholar
  26. Downes G, Beadle C, Worledge D (1999) Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14:102–111.  https://doi.org/10.1007/PL00009752 CrossRefGoogle Scholar
  27. Duchesne L, Houle D (2011) Modelling day-to-day stem diameter variation and annual growth of balsam fir (Abies balsamea (L.) Mill.) from daily climate. Forest Ecol Manag 262:863–872.  https://doi.org/10.1016/j.foreco.2011.05.027 CrossRefGoogle Scholar
  28. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht: 170 Tabellen. UTB, vol 8104, 5th edn. Ulmer, StuttgartGoogle Scholar
  29. Fiedler F, Wenk G (1973) Der jahreszeitliche Ablauf des Dickenzuwachses von Fichten und Kiefern und seine Abhängigkeit von meteorologischen Faktoren. Wissenschaftliche Zeitschrift der Technischen Universität Dresden 22:531–535Google Scholar
  30. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl Ecol 11:473–485.  https://doi.org/10.1016/j.baae.2010.07.009 CrossRefGoogle Scholar
  31. Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecol Manag 259:1761–1770.  https://doi.org/10.1016/j.foreco.2009.07.036 CrossRefGoogle Scholar
  32. Forrester DI, Ammer C, Annighöfer PJ, Barbeito I, Bielak K, Bravo-Oviedo A, Coll L, Río M, Drössler L, Heym M, Hurt V, Löf M, Ouden J, Pach M, Pereira MG, Plaga BNE, Ponette Q, Skrzyszewski J, Sterba H, Svoboda M, Zlatanov TM, Pretzsch H (2017) Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J Ecol 106:746–760.  https://doi.org/10.1111/1365-2745.12803 CrossRefGoogle Scholar
  33. Frech A (2006) Walddynamik in Mischwäldern des Nationalparks Hainich. Untersuchung der Mechanismen und Prognose der Waldentwicklung. Berichte des Forschungszentrums Waldökosysteme der Universität Göttingen, Reihe A, Vol 196 (Dissertation). Forschungszentrum Waldökosysteme der Universität Göttingen, GöttingenGoogle Scholar
  34. Gebauer T, Horna V, Leuschner C (2008) Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree Physiol 28:1821–1830CrossRefPubMedGoogle Scholar
  35. Gebhardt T, Häberle K-H, Matyssek R, Schulz C, Ammer C (2014) The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric Forest Meteorol 197:235–243.  https://doi.org/10.1016/j.agrformet.2014.05.013 CrossRefGoogle Scholar
  36. González de Andrés E, Camarero JJ, Blanco JA, Imbert JB, Lo Y-H, Sangüesa-Barreda G, Castillo FJ (2017) Tree-to-tree competition in mixed European beech–Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J Ecol 106:59–75.  https://doi.org/10.1111/1365-2745.12813 CrossRefGoogle Scholar
  37. Hauser S (2003) Dynamik hochaufgelöster radialer Schaftveränderungen und des Dickenwachstums bei Buchen (Fagus sylvatica L.) der Schwäbischen Alb unter dem Einfluss von Witterung und Bewirtschaftung: Dynamics of radial changes and of radial growth of beech trees (Fagus sylvatica L.) of the Swabian Alb, influenced by weather and silvicultural treatments. Dissertation. Fakultät für Forst- und Umweltwissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg im BreisgauGoogle Scholar
  38. Heide OM (1993) Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol Plantarum 89:187–191.  https://doi.org/10.1111/j.1399-3054.1993.tb01804.x CrossRefGoogle Scholar
  39. Henhappl G (1965) Über die Stärkeänderung der peripheren Stammzone von Waldbäumen im Jahresverlauf. Dissertation, Albert-Ludwigs-University, Freiburg im BreisgauGoogle Scholar
  40. Herzog KM, Hasler R, Thum R (1995) Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees 10:94–101CrossRefGoogle Scholar
  41. Horn HS (1971) The adaptive geometry of trees. Monographs in population biology, vol 3. Princeton University Press, PrincetonGoogle Scholar
  42. Ishii H, Asano S (2010) The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecol Res 25:715–722.  https://doi.org/10.1007/s11284-009-0668-4 CrossRefGoogle Scholar
  43. Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM (2009) Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol Biochem 41:2122–2130.  https://doi.org/10.1016/j.soilbio.2009.07.024 CrossRefGoogle Scholar
  44. Jacob M, Viedenz K, Polle A, Thomas FM (2010a) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164:1083–1094.  https://doi.org/10.1007/s00442-010-1699-9 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jacob M, Leuschner C, Thomas FM (2010b) Productivity of temperate broad-leaved forest stands differing in tree species diversity. Ann For Sci 67:503.  https://doi.org/10.1051/forest/2010005 CrossRefGoogle Scholar
  46. Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F, Netherer S, Orazio C, Piou D, Santos H, Schelhaas MJ, Tojic K, Vodde F (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66:701.  https://doi.org/10.1051/forest/2009054 CrossRefGoogle Scholar
  47. Ježík M, Blaženec M, Střelcová K, Ditmarová L (2011) The impact of the 2003–2008 weather variability on intra-annual stem diameter changes of beech trees at a submontane site in central Slovakia. Dendrochronologia 29:227–235.  https://doi.org/10.1016/j.dendro.2011.01.009 CrossRefGoogle Scholar
  48. Ježík M, Blaženec M, Kučera J, Střelcová K, Ditmarová L (2016) The response of intra-annual stem circumference increase of young European beech provenances to 2012–2014 weather variability. iForest Biogeosci For 2:960–969.  https://doi.org/10.3832/ifor1829-009 CrossRefGoogle Scholar
  49. Kelty MJ (1992) Comparative productivity of monocultures and mixed-species stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 125–141CrossRefGoogle Scholar
  50. Kelty MJ (2006) The role of species mixtures in plantation forestry. Forest Ecol Manag 233:195–204.  https://doi.org/10.1016/j.foreco.2006.05.011 CrossRefGoogle Scholar
  51. Kelty MJ, Cameron IR (1995) Plot designs for the analysis of species interactions in mixed stands. Commonw Forest Rev 74:322–332Google Scholar
  52. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101.  https://doi.org/10.1007/s10342-007-0186-2 CrossRefGoogle Scholar
  53. Knott R (2004) Seasonal dynamics of the diameter increment of fir (Abies alba Mill.) and beech (Fagus sylvatica L.) in a mixed stand. J Forest Sci 50:149–160CrossRefGoogle Scholar
  54. Köcher P, Gebauer T, Horna V, Leuschner C (2009) Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann For Sci 66:101.  https://doi.org/10.1051/forest/2008076 CrossRefGoogle Scholar
  55. Köcher P, Horna V, Leuschner C (2012) Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol 32:1021–1032.  https://doi.org/10.1093/treephys/tps049 CrossRefPubMedGoogle Scholar
  56. Köcher P, Horna V, Leuschner C (2013) Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol 33:817–832.  https://doi.org/10.1093/treephys/tpt055 CrossRefPubMedGoogle Scholar
  57. Kohler M, Sohn J, Nägele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129:1109–1118.  https://doi.org/10.1007/s10342-010-0397-9 CrossRefGoogle Scholar
  58. Kozlowski TT, Winget CH (1964) Diurnal and seasonal variation in radii of tree stems. Ecology 45:149–155.  https://doi.org/10.2307/1937115 CrossRefGoogle Scholar
  59. Lang C (2008) Diversität der Ektomykorrhizen in verschieden artenreichen Laubbaumbeständen im Nationalpark Hainich (Thüringen). Dissertation Universität Göttingen. Göttinger Forstwissenschaften, Vol 1. Universitätsverlag Göttingen, GöttingenGoogle Scholar
  60. Larocque GR, Luckai N, Adhikary SN, Groot A, Bell, Wayne F, Sharma M (2013) Competition theory—science and application in mixed forest stands: review of experimental and modelling methods and suggestions for future research. Environ Rev 21:71–84.  https://doi.org/10.1139/er-2012-0033 CrossRefGoogle Scholar
  61. Le Goff N, Ottorini J-M (1993) Thinning and climate effects on growth of beech (Fagus sylvatica L.) in experimental stands. Forest Ecol Manag 62:1–14.  https://doi.org/10.1016/0378-1127(93)90038-O CrossRefGoogle Scholar
  62. Leuschner C (1998) Mechanismen der Konkurrenzüberlegenheit der Rotbuche. In: Berichte der Reinhold-Tüxen-Gesellschaft (RTG), vol 10, pp 5–18Google Scholar
  63. MacDougal DT (1938) Tree growth. Chronica Botanica Company, LeidenGoogle Scholar
  64. Mäkinen H, Isomäki A (2004) Thinning intensity and growth of Scots pine stands in Finland. Forest Ecol Manag 201:311–325.  https://doi.org/10.1016/j.foreco.2004.07.016 CrossRefGoogle Scholar
  65. Mäkinen H, Nojd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959–968CrossRefPubMedGoogle Scholar
  66. Mäkinen H, Seo J-W, Nöjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127:235–245.  https://doi.org/10.1007/s10342-007-0199-x CrossRefGoogle Scholar
  67. Metz J, Seidel D, Schall P, Scheffer D, Schulze E-D, Ammer C (2013) Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. Forest Ecol Manag 310:275–288.  https://doi.org/10.1016/j.foreco.2013.08.014 CrossRefGoogle Scholar
  68. Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze E-D, Ammer C (2016) Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Global Change Biol 22:903–920.  https://doi.org/10.1111/gcb.13113 CrossRefGoogle Scholar
  69. Michelot A, Simard S, Rathgeber C, Dufrene E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045.  https://doi.org/10.1093/treephys/tps052 CrossRefPubMedGoogle Scholar
  70. Milios E (2004) The influence of stand development process on the height and volume growth of dominant Fagus sylvatica L. s.l. trees in the central Rhodope Mountains of north-eastern Greece. Forestry 77:17–26CrossRefGoogle Scholar
  71. Mölder I, Leuschner C (2014) European beech grows better and is less drought sensitive in mixed than in pure stands: tree neighbourhood effects on radial increment. Trees 28:777-792.  https://doi.org/10.1007/s00468-014-0991-4 CrossRefGoogle Scholar
  72. Monteith JL (1977) Climate and the efficiency of crop production in Britain [and discussion]. Phil Trans R Soc Lond B 281:277–294CrossRefGoogle Scholar
  73. Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219.  https://doi.org/10.1111/j.1461-0248.2011.01691.x CrossRefPubMedGoogle Scholar
  74. Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze E-D (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704.  https://doi.org/10.1093/treephys/tpq027 CrossRefPubMedGoogle Scholar
  75. Neubert K, Brunner E (2007) A studentized permutation test for the non-parametric Behrens–Fisher problem. Comput Stat Data Anal 51:5192–5204.  https://doi.org/10.1016/j.csda.2006.05.024 CrossRefGoogle Scholar
  76. Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24:887–898.  https://doi.org/10.1007/s00468-010-0458-1 CrossRefPubMedGoogle Scholar
  77. Oberhuber W, Gruber A, Kofler W, Swidrak I (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J For Res 133:467–479.  https://doi.org/10.1007/s10342-013-0777-z CrossRefPubMedPubMedCentralGoogle Scholar
  78. Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66:1–43.  https://doi.org/10.2307/2963479 CrossRefGoogle Scholar
  79. Perot T, Goreaud F, Ginisty C, Dhôte J-F (2010) A model bridging distance-dependent and distance-independent tree models to simulate the growth of mixed forests. Ann For Sci 67:502.  https://doi.org/10.1051/forest/2010004 CrossRefGoogle Scholar
  80. Porté A, Huard F, Dreyfus P (2004) Microclimate beneath pine plantation, semi-mature pine plantation and mixed broadleaved-pine forest. Agric Forest Meteorol 126:175–182.  https://doi.org/10.1016/j.agrformet.2004.06.001 CrossRefGoogle Scholar
  81. Pretzsch H (2001) Modellierung des Waldwachstums. Blackwell, BerlinGoogle Scholar
  82. Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner Ch, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems, vol 176. Springer, Berlin, pp 41–64CrossRefGoogle Scholar
  83. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecol Manag 327:251–264.  https://doi.org/10.1016/j.foreco.2014.04.027 CrossRefGoogle Scholar
  84. Pretzsch H, Biber P (2005) A re-evaluation of Reineke’s rule and stand density index. Forest Sci 51:304–320Google Scholar
  85. Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biol 7:628–639.  https://doi.org/10.1055/s-2005-865965 CrossRefPubMedGoogle Scholar
  86. Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204.  https://doi.org/10.1007/s10342-008-0215-9 CrossRefGoogle Scholar
  87. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712.  https://doi.org/10.1051/forest/2010037 CrossRefGoogle Scholar
  88. Pretzsch H, Dieler J, Seifert T, Rötzer T (2012) Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns. Trees 26:1343–1360.  https://doi.org/10.1007/s00468-012-0710-y CrossRefGoogle Scholar
  89. Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart H-P, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013a) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–280.  https://doi.org/10.1007/s10342-012-0673-y CrossRefGoogle Scholar
  90. Pretzsch H, Schütze G, Uhl E (2013b) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495.  https://doi.org/10.1111/j.1438-8677.2012.00670.x CrossRefPubMedGoogle Scholar
  91. Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–947.  https://doi.org/10.1007/s10342-015-0900-4 CrossRefGoogle Scholar
  92. Pretzsch H, del Río M, Schütze G, Ammer C, Annighöfer P, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Skrzyszewski J, Sramek V, Sterba H, Svoboda M, Verheyen K, Zlatanov T, Bravo-Oviedo A (2016) Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. Forest Ecol Manag 373:149–166.  https://doi.org/10.1016/j.foreco.2016.04.043 CrossRefGoogle Scholar
  93. Primicia I, Camarero JJ, Imbert JB, Castillo FJ (2013) Effects of thinning and canopy type on growth dynamics of Pinus sylvestris: inter-annual variations and intra-annual interactions with microclimate. Eur J For Res 132:121–135.  https://doi.org/10.1007/s10342-012-0662-1 CrossRefGoogle Scholar
  94. R Development Core Team (2013) R: a language and environment for statistical computing. R Development Core Team, ViennaGoogle Scholar
  95. Richardson AD, O’Keefe J (2009) Phenological differences between understory and overstory: a case study using the long-term Harvard forest records. In: Noormets A (ed) Phenology of ecosystem processes: applications in global change research. Springer, New York, pp 87–117CrossRefGoogle Scholar
  96. Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870.  https://doi.org/10.1139/cjfr-31-11-1855 CrossRefGoogle Scholar
  97. Schmid I (2002) The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl Ecol 3:339–346.  https://doi.org/10.1078/1439-1791-00116 CrossRefGoogle Scholar
  98. Schmid I, Kazda M (2001) Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can J For Res 31:539–548.  https://doi.org/10.1139/x00-195 CrossRefGoogle Scholar
  99. Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455.  https://doi.org/10.1007/s004420050397 CrossRefPubMedGoogle Scholar
  100. Sohn JA, Gebhardt T, Ammer C, Bauhus J, Häberle K-H, Matyssek R, Grams TEE (2013) Mitigation of drought by thinning: short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). Forest Ecol Manag 308:188–197.  https://doi.org/10.1016/j.foreco.2013.07.048 CrossRefGoogle Scholar
  101. Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444CrossRefGoogle Scholar
  102. Tardif J, Flannigan M, Bergeron Y (2001) An analysis of the daily radial activity of 7 boreal tree species, Northwestern Quebec. Environ Monit Assess 67:141–160.  https://doi.org/10.1023/A:1006430422061 CrossRefPubMedGoogle Scholar
  103. Turcotte A, Morin H, Krause C, Deslauriers A, Thibeault-Martel M (2009) The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric Forest Meteorol 149:1403–1409.  https://doi.org/10.1016/j.agrformet.2009.03.010 CrossRefGoogle Scholar
  104. van der Maaten E (2013) Thinning prolongs growth duration of European beech (Fagus sylvatica L.) across a valley in southwestern Germany. Forest Ecol Manag 306:135–141.  https://doi.org/10.1016/j.foreco.2013.06.030 CrossRefGoogle Scholar
  105. van der Maaten E, Bouriaud O, van der Maaten-Theunissen M, Mayer H, Spiecker H (2013) Meteorological forcing of day-to-day stem radius variations of beech is highly synchronic on opposing aspects of a valley. Agr Forest Meteorol 181:85–93.  https://doi.org/10.1016/j.agrformet.2013.07.009 CrossRefGoogle Scholar
  106. van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112.  https://doi.org/10.1016/j.dendro.2007.03.004 CrossRefGoogle Scholar
  107. Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  108. Vitas A (2011) Seasonal growth variations of pine, spruce, and birch recorded by band dendrometers in NE Lithuania. Baltic For 17:197–204Google Scholar
  109. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297Google Scholar
  110. Wipfler P, Seifert T, Biber P, Pretzsch H (2009) Intra-annual growth response of adult Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to an experimentally enhanced, free-air ozone regime. Eur J For Res 128:135–144.  https://doi.org/10.1007/s10342-008-0255-1 CrossRefGoogle Scholar
  111. Yang RC, Kozak A, Smith JHG (1978) The potential of Weibull-type functions as flexible growth curves. Can J For Res 8:424–431.  https://doi.org/10.1139/x78-062 CrossRefGoogle Scholar
  112. Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014) Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biol 20:3767–3779.  https://doi.org/10.1111/gcb.12637 CrossRefGoogle Scholar
  113. Zeide B (1985) Tolerance and self-tolerance of trees. Forest Ecol Manag 13:149–166.  https://doi.org/10.1016/0378-1127(85)90031-3 CrossRefGoogle Scholar
  114. Zhai L, Bergeron Y, Huang J-G, Berninger F (2012) Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species. Am J Bot 99:827–837.  https://doi.org/10.3732/ajb.1100235 CrossRefPubMedGoogle Scholar
  115. Zweifel R, Häsler R (2001) Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiol 21:561–569CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences and Forest EcologyUniversity of GöttingenGöttingenGermany
  2. 2.Max-Planck-Institute for BiogeochemistryJenaGermany

Personalised recommendations