Advertisement

Trees

, Volume 33, Issue 6, pp 1667–1678 | Cite as

Eucalyptus nitens plant regeneration from seedling explants through direct adventitious shoot bud formation

  • Paula G. Ayala
  • Elsa A. Brugnoli
  • Claudia V. Luna
  • Ana M. González
  • Raúl Pezzutti
  • Pedro A. SansberroEmail author
Original Article
  • 82 Downloads

Abstract

Key message

A protocol for true-to-type plantlets production by direct adventitious bud proliferation from Eucalyptus nitens hypocotyl segments was developed.

Abstract

Hypocotyls, cotyledons, and expanded leaves of Eucalyptus nitens were cultured in Murashige and Skoog (MS) medium containing naphthalene acetic acid or indole-3-acetic acid (IAA) and 6-benzyl adenine (BA). The most effective treatment for shoot bud formation, 0.5 μM IAA and 2.5 μM BA, was used in additional experiments. After 30 days of culture, the highest rate of regeneration (40 ± 5.8%) and the maximum number of buds differentiated per hypocotyl explant (10.3 ± 4) were obtained when explants were subjected to darkness for the first 10 days and then transferred to light-emitting diode lights mimicking daylight for 20 days of incubation. Histological examination confirmed direct shoot regeneration of E. nitens. For shoot growth, half-strength MS plus 0.09 M sucrose under forced ventilation yielded elongated shoots after 1 month. After 12 weeks from the onset of an experiment, 40 ± 11.5% of elongated shoots produced 5.3 ± 0.8 roots after pretreatment with indole-3-butyric acid aqueous solution and culture on basal medium without plant growth regulators under a temporary immersion system. Inter simple sequence repeat (ISSR) marker analysis revealed the genetic uniformity among the in vitro raised plants, demonstrating the reliability of the procedure.

Keywords

Direct shoot bud proliferation Lighting Organogenesis Shining gum 

Notes

Acknowledgements

This work was supported by Secretaría General de Ciencia y Técnica, Universidad Nacional del Nordeste (PI A001/14, PI A002/18) and Forestal Bosques del Plata S.A. (FBDP). E. Brugnoli, C. Luna, A. González, and P. Sansberro are members of the Research Council of Argentina (CONICET). G. Ayala received a scholarship from CONICET and FBDP.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Azmi A, Noin M, Landré P, Prouteau M, Boudet AM, Chriqui D (1997) High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: ontogenesis and ploidy level of the regenerants. Plant Cell Tissue Organ Cult 51:9–16CrossRefGoogle Scholar
  2. Balzarini M, Di Rienzo J (2013) Info-Gen: software para análisis estadístico de datos genéticos. Facultad de Ciencias Agropecuarias. Universidad Nacional de Córdoba, Argentina. http://www.info-gen.com.ar. Accessed 9 Sept 2013
  3. Bandyopadhyay S, Hamill JD (2000) Ultrastructural studies of somatic embryos of Eucalyptus nitens and comparisons with zygotic embryos found in mature seeds. Ann Bot 86:237–244CrossRefGoogle Scholar
  4. Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD (1999) Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species–Eucalyptus nitens and E. globulus. Plant Sci 140:189–198CrossRefGoogle Scholar
  5. Brugnoli E, Urbani M, Quarin C, Martínez E, Acuña C (2013) Diversity in diploid, tetraploid, and mixed diploid–tetraploid populations of Paspalum simplex. Crop Sci 53:1509–1516CrossRefGoogle Scholar
  6. Bunn E, Turner S, Panaia M, Dixon KW (2007) The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust J Bot 55:345–355CrossRefGoogle Scholar
  7. Denison NP, Kietzka JE (1993) The development and utilization of vegetative propagation in Mondi for commercial afforestation programmes. South Afr For J 165:47–54Google Scholar
  8. Dibax R, Eisfeld CL, Cuquel FL, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric 62:406–412CrossRefGoogle Scholar
  9. Glocke P, Collins G, Sedgley M (2005) In vitro organogenesis from seedling explants of the ornamentals Eucalyptus erythronema, E. stricklandii and the interspecific hybrid E. erythronema × E. stricklandii cv. ‘Urrbrae Gem’. J Hortic Sci Biotechnol 80:97–104CrossRefGoogle Scholar
  10. Gomes F, Canhoto JM (2003) Micropropagation of Eucalyptus nitens maiden (shining gum). Vitro Cell Dev Biol Plant 39:316–321CrossRefGoogle Scholar
  11. González AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres lhotzkyana (Sterculiaceae). Bonplandia 9:287–294CrossRefGoogle Scholar
  12. Hamilton MG, Dutkowski GW, Joyce KR, Potts BM (2011) Meta-analysis of racial variation in Eucalyptus nitens and E. denticulate. N Z J For Sci 41:217–230Google Scholar
  13. Harwood C (2015) Classical genetics and traditional breeding. In: Henry R, Kole C (eds) Genetic, genomics, and breeding of eucalypts. Taylor & Francis, Boca Raton, pp 12–33Google Scholar
  14. Huang X, Chen J, Bao Y, Liu L, Jiang H, An X, Dai L, Wang B, Peng D (2014) Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of ramie (Boehmeria nivea L. Gaud). Plos One 9:e113768CrossRefGoogle Scholar
  15. Humara JM, López M, Casares A, Majada J (2000) Temperature and provenance as two factors affecting Eucalyptus nitens seed germination. Forestry 73:87–90CrossRefGoogle Scholar
  16. Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: A case study with olive. In: Leva A, Rinaldi L (eds) Recent Advances in Plant in vitro Culture, vol Chapter 7. In Tech, London.  https://doi.org/10.5772/50367 CrossRefGoogle Scholar
  17. Lorenzo J, González J, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54:197–200CrossRefGoogle Scholar
  18. Luna CV, Gonzalez AM, Mroginski LA, Sansberro PA (2017) Anatomical and histological features of Ilex paraguariensis leaves under different in vitro shoot culture systems. Plant Cell Tissue Organ Cult 129:457–467CrossRefGoogle Scholar
  19. Maile N, Nieuwenhuis M (1996) Vegetative propagation of Eucalyptus nitens using stem cuttings. South Afr For J 175:29–35Google Scholar
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  21. Nakhooda M, Jain SM (2016) A review of Eucalyptus propagation and conservation. Propag Ornam Plants 16:101–119Google Scholar
  22. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0. http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp
  23. RIRDC (2009) Trees for farm forestry: 22 promising species. Eucalyptus nitens (Deane and Maiden) Maide. CSIRO forest and forestry production. Publication No. 09/015, pp 110-117Google Scholar
  24. Silva ALL, Gollo AL, Brondani GE, Horbach MA, Oliveira LS, Machado MP, Lima KKD, Costa JL (2015) Micropropagation of Eucalyptus saligna Sm. from cotyledonary nodes. Pak J Bot 47:311–318Google Scholar
  25. Tibbits WN, Potts BM, Savva MH (1991) Inheritance of freezing resistance in interspecific F1 hybrids of Eucalyptus. Theoret Appl Genet 83:126–135CrossRefGoogle Scholar
  26. Traas J (2019) Organogenesis at the shoot apical meristem. Plants 8:6.  https://doi.org/10.3390/plants8010006 CrossRefGoogle Scholar
  27. Trueman SJ, Hung CD, Wendling I (2018) Tissue culture of Corymbia and Eucalyptus. Forests 9:84CrossRefGoogle Scholar
  28. Turnbull JW, Doran JC (1987) Seed development and germination in the Myrtaceae. In: Langkamp P (ed) Germination of Australian native plant seed. Inkata Press, Melbourne, pp 46–57Google Scholar
  29. Vega M, Hamilton MG, Blackburn DP, McGavin RL, Baillères H, Potts BM (2016) Influence of site, storage and steaming on Eucalyptus nitens log-end splitting. Ann For Sci 73:257–266CrossRefGoogle Scholar
  30. Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guéon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508.  https://doi.org/10.1038/msb.2011.39 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias AgrariasUniversidad Nacional del NordesteCorrientesArgentina
  2. 2.Forestal Bosques del Plata S.APosadasArgentina

Personalised recommendations