pp 1–16 | Cite as

Foliar ontogeny in Gymnostoma deplancheanum and its evolutionary and ecological significance for scleromorphy and xeromorphy in Casuarinaceae (Fagales)

  • V. M. DörkenEmail author
  • P. G. Ladd
  • R. F. Parsons
Original Article


Key message

The phylogenetically basal genus of the Casuarinaceae, Gymnostoma, from relatively mesic environments, shows morphological and anatomical structures that are precursors to xeromorphic modifications in the derived genera Casuarina and Allocasuarina.


Gymnostoma is the basal genus of the Casuarinaceae with a long evolutionary history and a morphology that has changed little over many millions of years. From a wide distribution in the Tertiary of the southern hemisphere, it is now restricted to islands in the Pacific Ocean, the Malesian region and one small area of northeastern Queensland where it occurs in mesic climates, often on poor soils. The unique vegetative morphology it shares with other more derived genera in the family appears to be xeromorphic. Its distribution combined with the fossil evidence that early Tertiary Gymnostoma occurred with other taxa whose morphology indicated they grew in mesic environments implies that the reduction in the photosynthetic organs was not specifically related to growing in xeric environments. It may be related to evolutionary adaptation to growing on nutrient poor substrates that may also suffer from seasonal water deficit. The foliage reduction then served as a pre-adaptation for derived species to help them cope with the aridity that developed on the Australian continent through the later part of the Tertiary. The fusion of the leaves to the stem to form phyllichnia was a precursor which enabled the development of specific adaptations in the derived genera Casuarina and Allocasuarina to improve water conservation, such as stomata restricted to furrows between the phyllichnia and proliferation of structural sclerenchyma that helps prevent cell collapse under drought conditions.


Gymnostoma deplancheanum Leaf reduction Morphology Anatomy Scleromorphy Xeromorphy 



We are grateful to Mrs. Anne Kern (Botanic Garden of the University of Konstanz, Germany) for producing the seedlings. Furthermore, we thank Dr. Michael Laumann and Dr. Paavo Bergmann (Electron Microscopy Center, Department of Biology, University of Konstanz, Germany) for technical support (paraffin technique).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arena DA (2008) Exceptional preservation of plants and invertebrates by phosphatization, Riversleigh, Australia. Palaios 23:495–502CrossRefGoogle Scholar
  2. Barlow BA (1983) Casuarinas—a taxonomic and biogeographic review. In: Midgley SJ, Turnbull JW, Johnston RD (eds) Casuarina Ecology management and utilization. CSIRO, Melbourne, pp 10–18Google Scholar
  3. Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (2008) Strasburger, Lehrbuch der Botanik, 36th. Spektrum, HeidelbergGoogle Scholar
  4. Carpenter RJ, Macphail MK, Jordan GJ, Hill RS (2015) Fossil evidence for open, Proteaceae-dominated heathlands and fire in the late Cretaceous of Australia. Am J Bot 102:2092–2107CrossRefGoogle Scholar
  5. Christophel DC (1980) Occurrence of Casuarina megafossils in the Tertiary of south-eastern Australia. Aust J Bot 28:249–259CrossRefGoogle Scholar
  6. de Micco V, Aronne G (2012) Morpho-anatomical traits for plant adaptation to drought. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 37–61CrossRefGoogle Scholar
  7. Dilcher DL, Christophel DC, Bhagwandin HO, Scriven LJ (1990) Evolution of the Casuarinaceae: morphological comparisons of some extant species. Am J Bot 77:338–355CrossRefGoogle Scholar
  8. Dörken VM, Parsons RF (2017) Morpho-anatomical studies on the leaf reduction in Casuarina (Casuarinaceae): the ecology of xeromorphy. Trees 31:1165–1177CrossRefGoogle Scholar
  9. Dörken VM, Ladd PG, Parsons RF (2018) The foliar change from seedlings to adults in Allocasuarina (Casuarinaceae): the evolutionary and ecological aspects of leaf reduction, xeromorphy and scleromorphy. Feddes Rep 129(3):193–222CrossRefGoogle Scholar
  10. Duhoux E, Franche C, Bogusz D, Diouf D, Le VQ, Gherbi H, Sougoufara B, Le Roux C, Dommergues Y (1996) Casuarina and Allocasuarina species. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 35. Trees IV. Springer, BerlinGoogle Scholar
  11. Edwards C, Sanson GD, Aranwela N, Read J (2000) Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosyst 134:261–277CrossRefGoogle Scholar
  12. Flores EM (1977) Developmental studies in Casuarina (Casuarinaceae). III. The anatomy of the mature branchlet. Rev Biol Trop 25:65–87Google Scholar
  13. Gaudeul M, Rouhan G, Gardner MF, Hollingsworth PM (2012) AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae). Am J Bot 99:68–81CrossRefGoogle Scholar
  14. Gerlach D (1984) Botanische Mikrotomtechnik, eine Einführung, 2nd edn. Thieme, StuttgartGoogle Scholar
  15. Gersterberger P, Leins P (1978) Rasterelektronenmikroskopische Untersuchungen an Blütenknospen von Physalis philadelphia (Solanaceae). Ber Deutsch Bot Ges 91:381–387Google Scholar
  16. Guerin G (2004) Plant macrofossils associated with the Riversleigh macrofauna. Aust Biol 17:55–62Google Scholar
  17. Hanelt P (2000) Casuarinales. In: Fukarek F (ed) Urania Pflanzenreich, Blütenpflanzen 1. Urania, Berlin, pp 125–128Google Scholar
  18. He T, Lamont BB, Fogliani B (2016) Pre-Gondwanan-breakup origin of Beauprea (Proteaceae) explains its historical presence in New Caledonia and New Zealand. Sci Adv 2:e1501648CrossRefGoogle Scholar
  19. Heywood VH (1978) Flowering plants of the world. Oxford University Press, OxfordGoogle Scholar
  20. Heywood VH (1982) Blütenpflanzen der Welt. Birkhäuser, StuttgartGoogle Scholar
  21. Hill RS (1990) Evolution of the modern high latitude southern hemisphere flora. Evidence from the Australian macrofossil record. In: Douglas JG, Christophel DC (eds) Proceedings 3rd IOP conference, Melbourne 1988. A-Z Publishers, Melbourne, pp 31–42Google Scholar
  22. Hill RS (1994) History of selected taxa. In: Hill RS (ed) History of the Australia vegetation: Cretaceous to recent. Cambridge University Press, Cambridge, pp 390–420Google Scholar
  23. Hill RS, Brodribb TJ (2001) Macrofossil evidence for the onset of xeromorphy in Australian Casuarinaceae and tribe Banksieae (Proteaceae). J Mediterr Ecol 2:127–136Google Scholar
  24. Hill RS, Tarran MA, Hill KE, Beer YK (2018) The vegetation history of South Australia. Swainsona 30:9–16Google Scholar
  25. Hwang R, Conran JG (2000) Seedling characteristics in the Casuarinaceae. Telopea 8:429–439CrossRefGoogle Scholar
  26. Jaffre T, Gaulthier D, Rigault F, McCoy S (1994) Les Casuarinacees endemiques. Bois For Trop 242:4Google Scholar
  27. Johnson LAS, Wilson KL (1989) Casuarinaceae: a synopsis. In: Crane PR, Blackmore S (eds) Evolution, systematics and fossil history of the Hamamelidae, vol 2. Clarendon Press, Oxford, pp 167–188Google Scholar
  28. Johnson LAS, Wilson KL (1993) Casuarinaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants. vol 2. Flowering plants, dicotyledons: Magnoliid, Hamamelid and Caryophylloid families. Springer, Berlin, pp 237–242Google Scholar
  29. Jordan GJ, Brodribb TJ, Blackman CJ, Weston PH (2013) Climate drives vein anatomy in Proteaceae. Am J Bot 100:1483–1493CrossRefGoogle Scholar
  30. Jurzitza G (1987) Anatomie der Samenpflanzen. Thieme, StuttgartGoogle Scholar
  31. Kubitzki K, Rohwer JG, Bittrich V (1993) The families and genera of vascular plants. vol 2. Flowering plants, dicotyledons: Magnoliid, Hamamelid and Caryophylloid families. Springer, BerlinGoogle Scholar
  32. Ladd PG (1988) The status of Casuarinaceae in Australian forests. In: Frawley KJ, Semple NM (eds) Australia’s ever changing forests. Proceedings of the first national conference on Australian forest history. ADFA, Canberra, pp 63–85Google Scholar
  33. Macklin ED (1927) A revision of the “distyla complex” of the genus Casuarina. Trans R Soc S Aust 51:257–286Google Scholar
  34. Maggia L, Bousquet J (1994) Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity towards Frankia. Mol Ecol 3:459–467CrossRefGoogle Scholar
  35. McCoy SG (1998) The dynamics of Gymnostoma maquis on ultramafic soils in New Caledonia. PhD thesis, Australian National University, CanberraGoogle Scholar
  36. Moseley MF (1948) Comparative anatomy and phylogeny of the Casuarinaceae. Bot Gaz 110:231–280CrossRefGoogle Scholar
  37. Natho G, Müller C, Schmidt H (1990) Morphologie und Systematik der Pflanzen, Teil 1 (A-K). Fischer, Stuttgart, pp 144–146Google Scholar
  38. Niinemets Ü, Lukjanova A, Sparrow AD, Turnbull MH (2005) Light acclimation of cladode photosynthetic potentials in Casuarina glauca: trade-offs between physiological and structural investments. Funct Plant Biol 32:571–582CrossRefGoogle Scholar
  39. Poisson J (1874) Recherches sur les Casuarina. Nouvelles Arch Mus d’Hist Nat t.x pp 59–111, pl. IV–VIIGoogle Scholar
  40. Rao AN (1972) Anatomical studies on succulent cladodes in Casuarina equisetifolia. Proc Indian Acad Sci B 76:262–270Google Scholar
  41. Read J, Sanson GD (2003) Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol 160:81–99CrossRefGoogle Scholar
  42. Read J, Sanson GD, de Garine-Wichatitsky M, Jaffre T (2006) Sclerophylly in two contrasting tropical environments: low nutrients vs low rainfall. Am J Bot 93:1601–1614CrossRefGoogle Scholar
  43. Salleo S, Nardini A (2000) Sclerophylly: evolutionary advantage or mere epiphenomenon? Plant Biosyst 134:247–259CrossRefGoogle Scholar
  44. Schütt P, Schuck HJ, Stimm B (2002) Lexikon der Baum- und Straucharten. Nikol, HamburgGoogle Scholar
  45. Seddon G (1974) Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol J Linn Soc 6:65–87CrossRefGoogle Scholar
  46. Sogo A, Setoguchi H, Noguchi J, Jaffré T, Tobé H (2001) Molecular phylogeny of Casuarinaceae based on rbcL and matK gene sequences. J Plant Res 114:459–464CrossRefGoogle Scholar
  47. Solereder H (1908) Systematic anatomy of the dicotyledons. A handbook for laboratories of pure and applied botany, vol 2. Monochlamydeae, Addenda, Concluding remarks. Clarendon Press, OxfordGoogle Scholar
  48. Steane DA, Wilson KL, Hill RS (2003) Using matK sequence data to unravel the phylogeny of Casuarinaceae. Mol Phylogen Evol 28:47–59CrossRefGoogle Scholar
  49. Taylor TN, Taylor EL, Krings M (2009) Palaeobotany: the biology and evolution of fossil plants. Academic Press, BurlingtonGoogle Scholar
  50. Torrey JG, Berg RH (1988) Some morphological features for generic characterization among the Casuarinaceae. Am J Bot 75:864–874CrossRefGoogle Scholar
  51. Turnbull JW (1990) Taxonomy and genetic variation in Casuarinas. In: El-Lakany MH, Turnbull JW, Brewbaker (eds) Advances in Casuarina research and utilization. In: Proc 2nd Int Casuarina Workshop, Desert Dev Cent, AUC, Cairo, pp 1–11Google Scholar
  52. Warrier KCS, Suganthi A, Singh BG (2013) A new record of abnormal phylloclad modification in Casuarina equisetifolia. Int J Agric Sci Res 2:8–11Google Scholar
  53. Weiler E, Nover L (2008) Allgemeine und molekulare Botanik. Thieme, StuttgartCrossRefGoogle Scholar
  54. Williams RF, Metcalf RA (1985) The genesis of form in Casuarinaceae. Austr J Bot 33:563–578CrossRefGoogle Scholar
  55. Wilson KL, Johnson LAS (1989) Casuarinaceae. In: George AS (ed) Flora of Australia, vol 3. Hamamelidales to Casuarinales. Australian Government Publishing Service, Canberra, pp 100–174Google Scholar
  56. Zamaloa MC, Gandolfo MA, Gonzales CC, Romero EJ, Cuneo NR, Wilf P (2006) Casuarinaceae from the Eocene of Patagonia, Argentina. Int J Plant Sci 167:1279–1289CrossRefGoogle Scholar
  57. Zimpfer JF, Igual JM, McCarty B, Smyth C, Dawson JO (2004) Casuarina cunninghamiana tissue extracts stimulate the growth of Frankia and differentially alter the growth of other soil microorganisms. J Chem Ecol 30:439–452CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.School of VLSMurdoch UniversityMurdochAustralia
  3. 3.Department of Ecology, Environment and EvolutionLa Trobe UniversityMelbourneAustralia

Personalised recommendations