Advertisement

Trees

, Volume 33, Issue 2, pp 587–597 | Cite as

SNP development and diversity analysis for Ginkgo biloba based on transcriptome sequencing

  • Yaqiong Wu
  • Qi Zhou
  • Shujing Huang
  • Guibin Wang
  • Li-an XuEmail author
Original Article
  • 82 Downloads
Part of the following topical collections:
  1. Functional Genomics

Abstract

Key message

Based on Ginkgo biloba transcriptome data, 22 SNP loci using high-resolution melting curve technology were validated and genetic diversity was analyzed in three populations.

Abstract

Ginkgo biloba (Ginkgo) is a long-lived dioecious gymnosperm with unique morphological characteristics and play a significant role in evolutionary relationship research. In this study, we used Illumina paired-end RNA sequencing technology for facilitating the gene discovery and single nucleotide polymorphism (SNP) development in Ginkgo. We collected 44.08 G clean bases from six transcriptome datasets. The transcriptome data generated 98,919 unigenes among which 42,667 (43.13%) were successfully annotated. A total of 139,854 putative SNPs were identified; most of the SNPs were transition-type with the nucleotide transitions C–T or A–G. Further, 54532 (38.99%) SNPs were found in protein-coding regions: 23483 (43.06%) were synonymous and 31049 (56.94%) were nonsynonymous. 22 SNPs were subjected to PCR amplification and Sanger sequencing, and all of them were validated. To test the practicability of identified SNPs, these validated SNPs were also assessed by genotyping three natural populations with 84 individuals by high-resolution melting curve (HRM) analysis. Observed and expected heterozygosity varied from 0.0119 to 0.9643 and from 0.0581 to 0.5024, respectively. HRM technology was first applied for the SNP genotyping in Ginkgo. SNPs identified by RNA-Seq provided a useful resource for genetic and genomic studies in Ginkgo. Moreover, the collection of nonsynonymous SNPs annotated with their predicted functional effects also provided a valuable asset for further discovery of genes, identification of gene variants, and development of functional markers.

Keywords

Ginkgo biloba Transcriptome High-resolution melting curve Single nucleotide polymorphism 

Notes

Acknowledgements

This study was supported by the Special Fund for Forest Scientific Research in the Public Welfare (201504105), the Agricultural Science and Technology Independent Innovation Funds of Jiangsu Province (CX(16)1005), the National Key Research and Development Program of China (2017YFD0600700), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0954), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2018_1803_MOESM1_ESM.docx (14 kb)
Supplementary Table S1 Unigenes were annotated to the seven databases (DOCX 14 KB)
468_2018_1803_MOESM2_ESM.pdf (6 kb)
Supplementary Figure S1 Gene ontology (GO) classification of unigenes. All the annotated unigenes were divided into three functional GO categories: biological process (BP), cellular component (CC) and molecular function (MF) (PDF 6 KB)
468_2018_1803_MOESM3_ESM.pdf (6 kb)
Supplementary Figure S2 EuKaryotic Orthologous Groups (KOG) annotation of putative proteins. The x-axis indicates the names of the 26 groups of KOG. The y-axis indicates the number of genes annotated to the group out of the total number of genes annotated (PDF 5 KB)
468_2018_1803_MOESM4_ESM.tif (17.3 mb)
Supplementary Figure S3 The several typical SNP genotypes by Sanger sequencing. From A to H, the loci with the presence of a bimodal peak was identified to be heterozygous (TIF 17698 KB)

References

  1. Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Ggradziel TM, Lin D, Joshi NA, Martinez-Garcia PJ, Crisosto CH (2011) Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genom 12:569.  https://doi.org/10.1186/1471-2164-12-569 CrossRefGoogle Scholar
  2. Alencar S, Silva-Junior O, Togawa R, Costa M, Revers LF, Pappas G (2011) SNP discovery in apple cultivars using next generation sequencing. BMC Proc 5:42.  https://doi.org/10.1186/1753-6561-5-S7-P42 CrossRefGoogle Scholar
  3. Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans KM, Viola R, Velasco R, Dunwell JM, Troggio M, Sargent DJ (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus infinium whole genome genotyping array. BMC Genom 13:203.  https://doi.org/10.1186/1471-2164-13-203 CrossRefGoogle Scholar
  4. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186.  https://doi.org/10.1016/S0378-1119(99)00219-X CrossRefGoogle Scholar
  5. Cabrera A, Rosyara UR, Franceschi PD, Sebolt A, Sooriyapathirana SS, Dirlewanger E, Quero-Garcia J, Schuster M, Iezzoni AF, Knaap EVD (2012) Rosaceae conserved orthologous sequences marker polymorphism in sweet cherry germplasm and construction of a SNP-based map. Tree Genet Genomes 8:237–247.  https://doi.org/10.1007/s11295-011-0436-9 CrossRefGoogle Scholar
  6. Charoenkwan P, Sirichotiyakul S, Phusua A, Suanta S, Fanhchaksai K, Sae-Tung R, Sanguansermsri T (2017) High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand. Int J Hematol 106:757–764.  https://doi.org/10.1007/s12185-017-2306-1 CrossRefGoogle Scholar
  7. Distefano G, Malfa SL, Gentile A, Wu SB (2013) EST-SNP genotyping of citrus species using high-resolution melting curve analysis. Tree Genet Genomes 9:1271–1281.  https://doi.org/10.1007/s11295-013-0636-6 CrossRefGoogle Scholar
  8. Er TK, Chang JG (2012) High-resolution melting: applications in genetic disorders. Clin Chim Acta 414:197–201.  https://doi.org/10.1016/j.cca.2012.09.012 CrossRefGoogle Scholar
  9. Fasihi Y, Fooladi S, Mohammadi MA, Emaneini M, Kalantar-Neyestanaki D (2017) The spa typing of methicillin-resistant Staphylococcus aureus isolates by high resolution melting (HRM) analysis. J Med Microbiol 66:1335–1337.  https://doi.org/10.1099/jmm.0.000574 CrossRefGoogle Scholar
  10. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217.  https://doi.org/10.1016/j.pbi.2008.12.009 CrossRefGoogle Scholar
  11. Ganopoulos I, Tsaballa A, Xanthopoulou A, Madesis P, Tsaftaris A (2012)) Sweet cherry cultivar identification by high-resolution-melting (HRM) analysis using gene-based SNP markers. Plant Mol Biol Rep 31:763–768.  https://doi.org/10.1007/s11105-012-0538-z CrossRefGoogle Scholar
  12. Ganopoulos I, Bazakos C, Madesis P, Kalaitzis P, Tsaftaris A (2013) Barcode DNA high-resolution melting (bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. J Sci Food Agr 93:2281–2286.  https://doi.org/10.1002/jsfa.6040 CrossRefGoogle Scholar
  13. Glavač D, Dean M (1993) Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum Mutat 2:404–414.  https://doi.org/10.1002/humu.1380020513 CrossRefGoogle Scholar
  14. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652.  https://doi.org/10.1038/nbt.1883 CrossRefGoogle Scholar
  15. Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee S, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W (2016) Draft genome of the living fossil Ginkgo biloba. GigaScience 5:49.  https://doi.org/10.1186/s13742-016-0154-1 CrossRefGoogle Scholar
  16. Guo J, Wu Y, Wang B, Lu Y, Cao F, Wang G (2016) The effects of fertilization on the growth and physiological characteristics of Ginkgo biloba L. Forests 7:293.  https://doi.org/10.3390/f7120293 CrossRefGoogle Scholar
  17. Guo Y, Su B, Tang J, Zhou F, Qiu L (2017) Gene-based SNP identification and validation in soybean using next generation transcriptome sequencing. Mol Genet Genomics 5:1–11.  https://doi.org/10.1007/s00438-017-1410-5 CrossRefGoogle Scholar
  18. Hurley JD, Engle LJ, Davis JT, Welsh AM, Landers JE (2005) A simple, bead-based approach for multi-SNP molecular haplotyping. Nucleic Acids Res 32:e186.  https://doi.org/10.1093/nar/gnh187 CrossRefGoogle Scholar
  19. Jilberto F, Araneda C, Larraín MA (2017) High resolution melting analysis for identification of commercially-important Mytilus species. Food Chem 229:716–720.  https://doi.org/10.1016/j.foodchem.2017.02.109 CrossRefGoogle Scholar
  20. Jo IH, Lee SH, Kim YC, Kim DH, Kim HS, Kim KH, Chung JW, Bang KH (2015) De novo transcriptome assembly and the identification of gene associated single nucleotide polymorphism markers in Asian and American ginseng roots. Mol Genet Genomics 290:1055–1065.  https://doi.org/10.1007/s00438-014-0974-6 CrossRefGoogle Scholar
  21. Karchin R (2009) Next generation tools for the annotation of human SNPs. Brief Bioinform 10:35–52.  https://doi.org/10.1093/bib/bbn047 CrossRefGoogle Scholar
  22. Kim C, Guo H, Kong W, Chandnani R, Shuang L, Paterson A (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22.  https://doi.org/10.1016/j.plantsci.2015.04.016 CrossRefGoogle Scholar
  23. Kwok PY, Chen X (2003) Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5:43–60.  https://doi.org/10.1385/1592593275 Google Scholar
  24. Labandeira C (2010) The pollination of mid Mesozoic seed plants and the early history of long-probosicd insects1, 2, 3. Ann Mo Bot Gard 97:469–513.  https://doi.org/10.3417/2010037 CrossRefGoogle Scholar
  25. Lander ES (1996) The new genomics: global views of biology. Science 274:536–539.  https://doi.org/10.1126/science.274.5287.536 CrossRefGoogle Scholar
  26. Liu S, Li A, Chen C, Cai G, Zhang L, Guo C, Xu M (2017) De Novo transcriptome sequencing in Passiflora edulis Sims to identify genes and signaling pathways involved in cold tolerance. Forests 8(11):435.  https://doi.org/10.3390/f8110435 CrossRefGoogle Scholar
  27. Magallón S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100:556–573.  https://doi.org/10.3732/ajb.1200416 CrossRefGoogle Scholar
  28. Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a map reduce framework for analysis next-generation DNA sequencing data. Genome Res 20:1297–1303.  https://doi.org/10.1101/gr.107524.110 CrossRefGoogle Scholar
  29. Mehta B, Daniel R, McNevin D (2013) High resolution melting (HRM) of forensically informative SNPs. Forensic Sci Int-Gen 4:e376–e377.  https://doi.org/10.1016/j.fsigss.2013.10.191 CrossRefGoogle Scholar
  30. Mehta B, Daniel R, McNevin D (2017) HRM and SNaPshot as alternative forensic SNP genotyping methods. Forensic Sci Med Pathol 13:293–301.  https://doi.org/10.1007/s12024-017-9874-5 CrossRefGoogle Scholar
  31. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphisms in rice and establishment of SNP markers. DNA Res 9:163–171.  https://doi.org/10.1093/dnares/9.5.163 CrossRefGoogle Scholar
  32. Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengård J, Salomaa V, Vartiainen E, Boerwinkle E, Sing CF (1998) DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 19:233–240.  https://doi.org/10.1038/907 CrossRefGoogle Scholar
  33. Nickerson M L,Weirich G,Zbar B,Schmidt L S (2000) Signature-based analysis of MET proto-oncogene mutations using DHPLC. Hum Mutat 16:68–76.  https://doi.org/10.1002/1098-1004(200007)16:1%3C68::AID-HUMU12%3E3.0.CO;2-U CrossRefGoogle Scholar
  34. Plomion C, Bartholomé J, Lesur I, Boury C, Rodríguez-Quilón I, Lagraulet H, Ehrenmann F, Bouffier L, Gion JM, Grivet D, de Miguel M, de María N, Cervera MT, Bagnoli F, Isik F, Vendramin GG, González-Martínez SC (2016) High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Mol Ecol Resour 16:574–587.  https://doi.org/10.1111/1755-0998.12464 CrossRefGoogle Scholar
  35. Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608.  https://doi.org/10.2217/14622416.8.6.597 CrossRefGoogle Scholar
  36. Rojas A, Segev G, Markovics A, Aroch I, Baneth G (2017) Detection and quantification of Spirocerca lupi by HRM qPCR in fecal samples from dogs with spirocercosis. Parasite Vector 10:435.  https://doi.org/10.1186/s13071-017-2374-3 CrossRefGoogle Scholar
  37. Sato T, Nakagome S, Watanabe C, Yamaguchi K, Koganebuchi K, Haneji K, Yamaguchi T, Hanihara T, Yamamoto K, Ishida H, Mano S, Kimura R, Oota H (2014) Genome-wide SNP analysis reveals population structure and demographic history of the Ryukyu Islanders in the southern part of the Japanese Archipelago. Mol Biol Evol 31(11):2929–2940.  https://doi.org/10.1093/molbev/msu230 CrossRefGoogle Scholar
  38. Sharma K, Sharma M, Singh S, Modi M, Sharma A, Ray P, Varma S (2017) Real-time PCR followed by high-resolution melting curve analysis: a rapid and pragmatic approach for screening of multidrug-resistant extrapulmonary tuberculosis. Tuberculosis 106:56–61.  https://doi.org/10.1016/j.tube.2017.07.002 CrossRefGoogle Scholar
  39. Singh B, Kaur P, Singh RD, Ahuja PS (2008) Biology and chemistry of Ginkgo biloba. Fitoterapia 79:401–418.  https://doi.org/10.1016/j.fitote.2008.05.007 CrossRefGoogle Scholar
  40. Syvänen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10.  https://doi.org/10.1038/ng1558 CrossRefGoogle Scholar
  41. The Bovine HapMap Consortium (2009) Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324(5926):528.  https://doi.org/10.1126/science.1167936 CrossRefGoogle Scholar
  42. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotech 2:195–212.  https://doi.org/10.9787/PBB.2014.2.3.195 CrossRefGoogle Scholar
  43. Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305.  https://doi.org/10.1051/gse:2002009 CrossRefGoogle Scholar
  44. Wang J, Cao F, Su E, Wu C, Zhao L, Ying R (2013) Improving flavonoid extraction from Ginkgo biloba leaves by prefermentation processing. J Agr Food chem 61:5783–5791.  https://doi.org/10.1021/jf400712n CrossRefGoogle Scholar
  45. Wang L, Zhao J, Luo K, Cui J, He Q, Xia X, Lu Z, Li W, Jin B (2016) Deep sequencing discovery and profiling of conserved and novel miRNAs in the ovule of Ginkgo biloba. Trees-Struct Funct 30:1557–1567.  https://doi.org/10.1007/s00468-016-1389-2 CrossRefGoogle Scholar
  46. Wittwer CT, Reed GH, Gundry CN, Joshua GV, Pryor RJ (2003) High resolution genotyping by amplicon melting analysis using LC Green. Clin Chem 49:853–860.  https://doi.org/10.1373/49.6.853 CrossRefGoogle Scholar
  47. Xu M, Li Z, Wang J, Liu S, Cai H (2017a) RNA sequencing and SSR marker development for genetic diversity research in Woonyoungia septentrionalis (Magnoliaceae) Conservation Genet Resour 4:1–6.  https://doi.org/10.1007/s12686-017-0884-0 Google Scholar
  48. Xu M, Liu X, Wang J, Teng S, Shi J, Li Y, Huang M (2017b) Transcriptome sequencing and development of novel genic SSR markers for Dendrobium officinale. Mol Breeding 37(2):18.  https://doi.org/10.1007/s11032-016-0613-5 CrossRefGoogle Scholar
  49. Yan X, Chen Y, Guan B, Fu C (2009) Eleven novel microsatellite markers developed from the living fossil Ginkgo biloba (Ginkgoaceae). Conserv Genet 10:1277–1279.  https://doi.org/10.1007/s10592-008-9706-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yaqiong Wu
    • 1
  • Qi Zhou
    • 1
  • Shujing Huang
    • 1
  • Guibin Wang
    • 1
  • Li-an Xu
    • 1
    Email author
  1. 1.Co-Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina

Personalised recommendations