, Volume 32, Issue 4, pp 1113–1121 | Cite as

How softwood tree branches are attached to stems: hierarchical extension of Shigo’s stem–branch model

  • Ulrich MüllerEmail author
  • Wolfgang Gindl-Altmutter
  • Jozef Keckes
Original Article
Part of the following topical collections:
  1. Biomechanics


Key message

The main achievement of this study is an extension of the existing model of Shigo of the branch–stem junction of coniferous trees by introducing the concept of a sacrificial tissue. This tissue is acting as a predetermined breaking point between branch and stem, and limits fracture and damage to a small and isolated zone within the tree.


Shigo developed a macroscopic model of the fibre structure in the vicinity of a branch–stem junction of coniferous trees to explain special physiological functions of the junction. However, abrupt changes in the cell orientations at the vertex of the branch observed on fracture surfaces and micro-cuts of the branch–stem junction interphase demand an extension of the existing model. The recent introduction of the concept of a sacrificial tissue, formed in the upper region of the branch–stem interface, brings more insights into the hierarchical junction microstructure and its mechanical and biological functions. Beyond a critical load, the sacrificial tissue serves as a predetermined crack path of zig–zag morphology originating from the stepwise distribution of transversally loaded cells at the junction. The hierarchical branch–stem junction microstructure, however, secures the stem and branch physiological functions, even when the crack opening is formed along the channel of the sacrificial tissue. Moreover, after the removal of the load, complete closure of the crack can be observed, which is explained by the release of the elastic energy stored in cells of the bent branch with high microfibril angle. The self-repair mechanism of the living branch is based on covering the crack by cell division of a sound cambium in combination with resin deposition.


Branch–stem junction Coniferous trees Model Repair mechanism Shigo’s model Wood structure 



The authors sincerely thank Lukas Graf for microscopy laboratory work and Alexander Stadlmann for providing young spruce wood trees.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Böhlmann D (1970a) Anatomisch-histologische Untersuchungen im Bereich der Astabzweigung bei Nadel- und Laubbäumen. I. Die Verhältnisse im Abzweigungsbereich der Langtriebe von Nadelbäumen. Allg For Jagdztg 141(7):134–140Google Scholar
  2. Böhlmann D (1970b) Anatomisch-histologische Untersuchungen im Bereich der Astabzweigung bei Nadel- und Laubbäumen. IV. Die Abzweigungsverhältnisse bei Juglans, Fraxinus, Betula und Fagus und ihre Zuordnung zu Abzweigungstypen. Allg For Jagdztg 141(12):245–250Google Scholar
  3. Buksnowitz C, Teischinger A, Grabner M, Müller U, Mahn L (2010) Tracheid length in Norway spruce (Picea abies (L.) Karst.) analysis of three databases regarding tree age, cambial age, tree height, inter-annual variation, radial distance to pith and log qualities. Wood Res 55(4):1–13Google Scholar
  4. Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz—Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. Springer, New YorkCrossRefGoogle Scholar
  5. Fahn A, Zamski E (1970) The influence of pressure, wind, wounding and growth substances on the rate of resin duct formation in Pinus halepensis wood. Isr J Bot 19:429–446Google Scholar
  6. Färber J, Lichtenegger HC, Reiterer A, Stanzl-Tschegg S, Fratzl P (2001) Cellulose microfibril angles in a spruce branch and mechanical implications. J Mater Sci 36:5087–5092CrossRefGoogle Scholar
  7. Fink G, Kohler J (2011) Multiscale variability of stiffness properties of timber boards. In: Applications of statistics and probability in civil engineering—ICASP 11. Taylor & Francis, London, pp 1369–1376CrossRefGoogle Scholar
  8. Hu M, Briggert A, Olsson A, Johansson M, Oscarsson J, Sa H (2018) Growth layer and fibre orientation around knots in Norway spruce: a laboratory investigation. Wood Sci Technol 52:7–27CrossRefGoogle Scholar
  9. Jenkel C, Kaliske M (2014) Finite element analysis of timber containing branches—an approach to model the grain course and the influence on the structural behaviour. Eng Struct 75(15):237–247CrossRefGoogle Scholar
  10. Jungnikl K, Goebbels J, Burgert I, Fratzl P (2009) The role of material properties for the mechanical adaptation at branch junctions. Trees Struct Funct 23:605–610CrossRefGoogle Scholar
  11. Kandler G, Lukacevic M, Füssl J (2016) An algorithm for the geometric reconstruction of knots within timber boards based on fibre angle measurements. Constr Build Mater 124(15):945–960CrossRefGoogle Scholar
  12. Kohler M, Sohn J, Nägele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129(6):1109–1118CrossRefGoogle Scholar
  13. Li X, Yang X, Wu HX (2013) Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism. BMC Genom 14:768CrossRefGoogle Scholar
  14. Lukacevic M, Füssl J, Lampert R (2015) Failure mechanisms of clear wood identified at wood cell level by an approach based on the extended finite element method. Eng Fract Mech 144:158–175CrossRefGoogle Scholar
  15. Lukacevic M, Lederer W, Füssl J (2017) A microstructure-based multisurface failure criterion for the description of brittle and ductile failure mechanisms of clear-wood. Eng Fract Mech 176:83–99CrossRefGoogle Scholar
  16. Mattheck C (1998) Design in nature—learning from trees. Springer, BerlinGoogle Scholar
  17. Mattheck C, Bethge K (1998) The structural optimization of trees. Naturwissenschaften 85:1–10CrossRefGoogle Scholar
  18. Mattheck C, Kubler H (1997) Wood—the internal optimization of trees. Springer, BerlinCrossRefGoogle Scholar
  19. Meierhofer U (1976) Der Ast als qualitätsbeeinflussendes Strukturmerkmal. Bulletin 4/2. Schweizer Arbeitsgemeinschaft für Holz, Lignum, ZürichGoogle Scholar
  20. Müller U, Gindl W, Jeronimidis G (2006) Biomechanics of a branch–Stem junction in softwood. Trees Struct Funct 20:643–648CrossRefGoogle Scholar
  21. Müller U, Gindl-Altmutter W, Konnerth J, Maier GA, Keckes J (2015) Synergy of multi-scale toughening and protective mechanisms at hierarchical branch–stem interfaces. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Neely D (1991) Water transport at stem–branch junctures in woody angiosperms. J Arboric 17(11):285–290Google Scholar
  23. Oscarsson J, Olsson A, Enquist B (2012) Strain fields around knots in Norway spruce specimens exposed to tensile forces. Wood Sci Technol 46:593–610CrossRefGoogle Scholar
  24. Reuschel JD (1999) Untersuchungen der Faserandordnung natürlicher Faserverbunde und Übertragung der Ergebnisse auf technische Bauteile mit Hilfe der Finite-Elemente-Methode. Dissertation. Forschungszentrum Karlsruhe GmbH, KarlsruheGoogle Scholar
  25. Shigo AL (1985) How tree branches are attached to trunks. Can J Bot 63:1391–1401CrossRefGoogle Scholar
  26. Shigo AL (1990) A new tree biology. Thalacker, BraunschweigGoogle Scholar
  27. Slater D, Ennos R (2013) Determining the mechanical properties of hazel forks by testing their component parts. Trees 27:1515–1524CrossRefGoogle Scholar
  28. Slater D, Ennos R (2015a) The level of occlusion of included bark affects the strength of bifurcations in Hazel (Corylus avellana L.). Arboric Urban For 41(4):194–207Google Scholar
  29. Slater D, Ennos R (2015b) Interlocking wood grain patterns provide improved wood strength properties in forks of hazel (Corylus avellana L.). Arboric J 37(1):21–32CrossRefGoogle Scholar
  30. Slater D, Harbinson C (2010) Towards a new model of branch attachment. Arboric J 33(2):95–105CrossRefGoogle Scholar
  31. Sorce C, Giovannelli A, Sebastiani L, Anfodillo T (2013) Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep 32:885–898CrossRefPubMedGoogle Scholar
  32. Timell TE (1986) Compression wood in gymnosperms. Springer, BerlinCrossRefGoogle Scholar
  33. Trendelenburg R (1955) Das Holz als Rohstoff. Carl Hanser Verlag, MünchenGoogle Scholar
  34. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286CrossRefPubMedGoogle Scholar
  35. Weinkamer R, Fratzl P (2011) Mechanical adaptation of biological materials—the examples of bone and wood. Mater Sci Eng C 31(6):1164–1173CrossRefGoogle Scholar
  36. Wimmer R, Grabner M (1997) Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea abies (L.) Karst.). Trees 11:271–276Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life ScienceViennaAustria
  2. 2.Erich Schmid Institute of Materials ScienceLeobenAustria

Personalised recommendations