Advertisement

Trees

, Volume 32, Issue 4, pp 1013–1028 | Cite as

The foliar change in two species of Melaleuca (Myrtaceae): a morpho-anatomic and ontogenetic approach

  • V. M. Dörken
  • R. F. Parsons
Original Article
  • 53 Downloads

Abstract

Key message

In Melaleuca minutifolia mature leaves are linear, in Melaleuca micromera scale-like and peltate. This peltation is caused by swollen basal mesophyll without meristematic fusions. Thus, a novel peltation strategy is described.

Abstract

The foliar change of two Australian Melaleuca species (Myrtaceae) was investigated in different ontogenetic stages from cotyledons up to the mature leaf types. In both taxa (M. minutifolia and M. micromera), a strong leaf reduction occurs. While in M. minutifolia the mature leaf type is linear, inverse bifacial and strongly adpressed to the shoot axis, in M. micromera it is scale-like, aequifacial, minute and peltate. The mature leaf type of M. micromera is one of the rare examples of peltation among woody species. The ontogenetic studies on the mature peltate leaf type of M. micromera showed that a shield-like leaf base and typical peltate leaf morphology can be formed, not exclusively by meristematic fusions, as is the case for peltate leaves in the classical sense, but instead by strongly swollen mesophyll, particularly in the basal part of the leaf. While most species with peltate leaves are herbaceous perennials from very moist to aquatic habitats and lack reduced leaves, the four Melaleuca species known with the M. micromera type of peltation are from habitats showing either seasonal water stress, soil infertility or both and all show extreme leaf reduction. Given our morpho-anatomical data, it is clear that, as well as the classical type of peltation, a novel, second strategy for achieving peltation needs to be distinguished. The two types are correlated with quite different environmental conditions.

Keywords

Peltation Phyllotaxis Leaf transformation Scale leaf Aequifacial Bifacial 

Notes

Acknowledgements

We are grateful to Mrs. Anne Kern and Mr. Otmar Ficht (Botanic Garden, University of Konstanz, Germany) for producing the seedlings. Furthermore, we thank Dr. Michael Laumann and Dr. Paavo Bergmann (Electron Microscopy Center, Department of Biology, University of Konstanz, Germany) for technical support (paraffin technique).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Atlas of Living Australia (2017) Atlas of Living Australia. http://www.ala.org.au. Accessed 7 May 2017
  2. Australia’s Virtual Herbarium (2017) Australia’s Virtual Herbarium. https://avh.chah.org.au. Accessed 10 May 2017
  3. Baker RT, Smith HG (1910) A research on the pines of Australia. Technological Museum, Technical Education Series No. 16. Government Printer, SydneyGoogle Scholar
  4. Barnes ME (2014) Ernst Haeckel’s biogenetic law (1866). In: The embryo project encyclopedia. Arizona State University, Tempe, pp 1–5Google Scholar
  5. Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation with special reference to xeromorphy and sclerophylly. Ecology 47:992–1007CrossRefGoogle Scholar
  6. Beck CB (2010) An introduction to plant structure and development, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Bentham G (1866) Flora Australiensis, vol 3. Lowell Reeve, LondonGoogle Scholar
  8. Biffin E, Brodribb TJ, Hill RS, Thomas P, Lowe A (2012) Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proc R Soc Lond Ser B Biol Sci 279:341–348CrossRefGoogle Scholar
  9. Blum A (1996) Crop responses to drought and the interpretation of adaptation. Pl Growth Regul 20:135–148CrossRefGoogle Scholar
  10. Blum A, Arkin GF (1984) Sorghum root growth and water use as affected by water supply and growth duration. Field Crop Res 9:131–142CrossRefGoogle Scholar
  11. Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Pl Sci 163:375–379CrossRefGoogle Scholar
  12. Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (2008) Strasburger, Lehrbuch der Botanik, 36th edn. Spektrum, HeidelbergGoogle Scholar
  13. Brodribb TJ, Hill RS (1998) The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Funct Ecol 12:465–471CrossRefGoogle Scholar
  14. Brophy JJ, Craven LA, Doran JC (2013) Melaleucas, their botany, essential oils and uses. ACIAR, CanberraGoogle Scholar
  15. Cambage RH (1914) Dimorphic foliage of Acacia rubida and fructification during bipinnate stage. J Proc R Soc New S Wales 48:136–140Google Scholar
  16. Coulter JM, Chamberlain CJ (1928) Morphology of gymnosperms, 4th edn. University of Chicago Press, ChicagoGoogle Scholar
  17. De Laubenfels DJ (1953) The external morphology of coniferous leaves. Phytomorphology 3:1–20Google Scholar
  18. Dörken VM (2013) Leaf dimorphism in Thuja plicata and Platycladus orientalis (thujoid Cupressaceae s. str., Coniferales): the changes in morphology and anatomy from juvenile needle leaves to mature scale leaves. Pl Syst Evol 299:1991–2001CrossRefGoogle Scholar
  19. Dörken VM, Jagel A (2014) Pinus sylvestris—Wald-Kiefer (Pinaceae), Baum des Jahres 2007. Jahrb Bochumer Bot Ver 5:246–254Google Scholar
  20. Dörken VM, Parsons RF (2016) Morpho-anatomical studies on the change in the foliage of two imbricate-leaved New Zealand podocarps: Dacrycarpus dacrydioides and Dacrydium cupressinum. Pl Syst Evol 302:41–54CrossRefGoogle Scholar
  21. Dörken VM, Parsons RF (2017) Morpho-anatomical studies on the leaf reduction in Casuarina (Casuarinaceae): the ecology of xeromorphy. Trees 31:1165–1177CrossRefGoogle Scholar
  22. Dörken VM, Parsons RF, Marshall AT (2017) Studies on the foliage of Myricaria germanica (Tamaricaceae) and their evolutionary and ecological implication. Trees 31:997–1013CrossRefGoogle Scholar
  23. Düll R, Kutzelnigg H (2011) Taschenlexikon der Pflanzen Deutschlands und angrenzender Länder, 7th edn. Quelle and Meyer, WiebelsheimGoogle Scholar
  24. Ebel F (1998) Die Schildblättrigkeit krautiger Angiospermen-Sippen in ihrer Beziehung zu Standort und Verbreitung. Flora 193:203–224CrossRefGoogle Scholar
  25. Eckenwalder JE (2009) Conifers of the World. Timber Press, PortlandGoogle Scholar
  26. Fitting H (1950) Weitere Beobachtungen über die Induktion der Dorsiventralität in den blattartigen Zweigsystemen von Cupressaceen. Planta 37:676–696CrossRefGoogle Scholar
  27. FloraBase (2017) The Western Australian Flora. https://florabase.dpaw.wa.gov.au. Accessed 24 May 2017
  28. Foster AS, Gifford EM (1974) Comparative morphology of vascular plants, 2nd edn. Freeman, San FranciscoGoogle Scholar
  29. Franck DH (1976) The morphological interpretation of epiascidiate leaves: an historical perspective. Bot Rev 42(3):345–388CrossRefGoogle Scholar
  30. Fukushima K, Hasebe M (2014) Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 52:1–18CrossRefPubMedGoogle Scholar
  31. Gerlach D (1984) Botanische Mikrotomtechnik, eine Einführung, 2nd edn. Thieme, StuttgartGoogle Scholar
  32. Givnish TJ, Vermeij GJ (1976) Size and shapes of liane leaves. Am Nat 110:743–778CrossRefGoogle Scholar
  33. Gleissberg S, Groot EP, Schmalz M, Eichert M, Kölsch A, Hutter S (2005) Developmental events leading to peltate leaf structure in Tropaeolum majus (Tropaeolaceae) are associated with expression domain changes of a YABBY gene. Dev Genes Evol 215:313–319CrossRefPubMedGoogle Scholar
  34. Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Pl Syst Evol 199:121–152CrossRefGoogle Scholar
  35. Hill RS (1998) Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Aust Syst Bot 11:391–400CrossRefGoogle Scholar
  36. Hill RS, Merrifield HE (1993) An Early Tertiary macroflora from West Dale, southwestern Australia. Alcheringa 17:285–326CrossRefGoogle Scholar
  37. Hooker JD (1860) The botany of the Antarctic voyage of H.M. discovery ships ‘Erebus’ and ‘Terror’, vol 3. Flora Tasmaniae. Reeve, LondonGoogle Scholar
  38. Howchin W (1930) The building of Australia and the succession of life. part III. Pleistocene and Recent. Harrison Weir, Government Printer, AdelaideGoogle Scholar
  39. Imamura SL (1937)) Über die aitiogene Dorsiventralität der Assimilationsorgane bei höheren Pflanzen. Bot Mag (Tokyo) 61:308–316Google Scholar
  40. Jurzitza G (1987) Anatomie der Samenpflanzen. Thieme, StuttgartGoogle Scholar
  41. Keng H (1963) Aspects of the morphology of Phyllocladus hypophyllus. Ann Bot (Oxford) 27:69–80CrossRefGoogle Scholar
  42. Keng H (1974) The Phylloclade of Phyllocladus and its possible bearing on the branch systems of progymnosperms. Ann Bot (Oxford) 38:757–764CrossRefGoogle Scholar
  43. Keng H (1979) A monograph of the genus Phyllocladus (Coniferae). Natural Publishing Company, TaipeiGoogle Scholar
  44. Korner C (2003) Alpine plant life, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  45. Kück U, Wolf G (2009) Botanisches Grundpraktikum, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  46. Langner W (1963) Die Entstehung sogenannter Jugendformen bei Chamaecyparis. Silvae Genet 13:57–63Google Scholar
  47. Leinfellner W (1953) Die “schildförmigen” Laubblätter von Melaleuca micromera Schau. Österr Bot Z 100:639–645CrossRefGoogle Scholar
  48. Leins P, Erbar C (2008) Blüte und Frucht: Morphologie, Entwicklungsgeschichte, Phylogenie, Funktion, Ökologie, 2nd edn. Schweizerbart´sche Verlagsbuch-handlung, StuttgartGoogle Scholar
  49. Leins P, Erbar C (2010) Flower and fruit: morphology, ontogeny, phylogeny, function and evolution. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  50. Little DP (2006) Evolution and circumscription of the True Cypresses (Cupressaceae: Cupressus). Syst Bot 31(3):461–480CrossRefGoogle Scholar
  51. Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann Bot (Oxford) 25:168–184CrossRefGoogle Scholar
  52. Loveless AR (1962) Further evidence to support a nutritional interpretation of sclerophylly. Ann Bot (Oxford) 26:551–561CrossRefGoogle Scholar
  53. McMillan C (1956) The edaphic restriction of Cupressus and Pinus in the coast ranges of central California. Ecol Monogr 26:178–212CrossRefGoogle Scholar
  54. Napp-Zinn K (1966) Anatomie des Blattes. I. Blattanatomie der Gymnospermen. Bornträger, BerlinGoogle Scholar
  55. Natho G, Müller C, Schmidt H (1990) Morphologie und Systematik der Pflanzen, Teil 2 (L-Z). UTB Gustav Fischer Verlag, StuttgartGoogle Scholar
  56. Parsons RF (2010) Whipcord plants: a comparison of south-eastern Australia with New Zealand. Cunninghamia 11:277–281Google Scholar
  57. Pedley L (1986) Derivation and dispersal of Acacia (Leguminosae), with particular reference to Australia and the recognition of Senegalia and Racosperma. Bot J Linn Soc 92:219–254CrossRefGoogle Scholar
  58. Rudall RJ (2007) Anatomy of flowering plants, an introduction to structure and development. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  59. Salleo S, Nardini A (2000) Sclerophylly: evolutionary advantage or mere epiphenomenon? Plant Biosystems 134:247–259CrossRefGoogle Scholar
  60. Schütt P (2004) Thuja occidentalis Linné 1753, Abendländischer Lebensbaum. In: Schütt P, Weisgerber H, Schuck HJ, Lang UM, Stimm B, Roloff A (eds) Lexikon der Nadelbäume. Nicol, Hamburg, pp 591–598Google Scholar
  61. Seddon G (1974) Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol J Linn Soc 6:65–87CrossRefGoogle Scholar
  62. Seidling W, Ziche D, Beck W (2012) Climate responses and interrelations of stem increment and crown transparency in Norway Spruce, Scots Pine and Common Beech. For Ecol Manag 284:196–204CrossRefGoogle Scholar
  63. Sharp BR, Bowman DMJS (2004) Net woody vegetation increase confined to seasonally inundated lowlands in an Australian tropical savanna, Victoria River District, Northern Territory. Aust Ecol 29:667–683CrossRefGoogle Scholar
  64. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  65. Taiz L, Zeiger E, Møller IM, Murphy A (2014) Plant physiology and development, 6th edn. Oxford University Press, OxfordGoogle Scholar
  66. Tetzlaf M (2005) Die Anatomie des Gymnospermenblattes unter funktionellen und evolutiven Gesichtspunkten—diploma, Ruhr-University, BochumGoogle Scholar
  67. Thoday D (1931) The significance of reduction in the size of leaves. J Ecol 19:297–303CrossRefGoogle Scholar
  68. Throm G (2007) Grundlagen der Botanik, 2nd edn. Nikol, HamburgGoogle Scholar
  69. Troll W (1932) Morphologie der schildförmigen Blätter. Planta 17:153–314CrossRefGoogle Scholar
  70. Wagenitz G (2008) Wörterbuch der Botanik, 2nd edn. Nikol, HamburgGoogle Scholar
  71. Weberling F (1981) Morphologie der Blüten und Blütenstände. Ulmer, StuttgartGoogle Scholar
  72. Weiler E, Nover L (2008) Allgemeine und molekulare Botanik. Thieme, StuttgartCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzConstanceGermany
  2. 2.Department of Ecology, Environment and EvolutionLa Trobe UniversityMelbourneAustralia

Personalised recommendations