Advertisement

Trees

, Volume 32, Issue 4, pp 951–965 | Cite as

Dark chlorophyll synthesis may provide a potential for shade tolerance as shown by a comparative study with seedlings of European larch (Larix decidua) and Norway spruce (Picea abies)

  • Tibor Stolárik
  • Vladimíra Nožková
  • Lukáš Nosek
  • Andrej Pavlovič
Original Article
  • 117 Downloads

Abstract

Key message

The ability to green in the dark represents a trait providing shade tolerance in seedlings of Norway spruce.

Abstract

In contrast to angiosperm plants, gymnosperms possess two different enzymes for the reduction of protochlorophyllide to chlorophyllide: dark-operative, light-independent protochlorophyllide oxidoreductase (DPOR), consisting of three subunits: ChlL, ChlN and ChlB, and light-dependent protochlorophyllide oxidoreductase (LPOR). European larch seedlings (Larix decidua Mill.), in contrast to Norway spruce (Picea abies Karst.), accumulate only very low amounts of chlorophylls in the dark due to an inactive DPOR enzyme. In this study, we used these two species to investigate the advantage of the co-existence of two protochlorophyllide oxidoreductases on chlorophyll synthesis under different light conditions. We found that under deep shade conditions, the larch seedlings are partially etiolated with a low quantum yield of photosystem II photochemistry caused by inefficient LPOR function under that subliminal irradiance concomitant with an inactive DPOR enzyme. In contrast, spruce accumulated a significant amount of chlorophylls under deep shade conditions due to the co-existence of active DPOR and LPOR enzymes. Moreover, although PSII developed in the dark had an inactive oxygen-evolving complex, even very low irradiance is sufficient for photoactivation of PSII, as proved by the high quantum yield of photosystem II (Fv/Fm) and the disappearance of the K-step in chlorophyll a fluorescence induction under deep shade conditions in spruce. We did not find any advantage of having DPOR enzyme under high light conditions, which is consistent with the decreasing abundance of DPOR subunits with increasing light intensities. Thus, the presence of an active DPOR enzyme may represent a molecular basis for shade tolerance in coniferous seedlings.

Keywords

Chlorophyll Larix decidua (European larch) Light acclimation Shade Picea abies (Norway spruce) 

Notes

Acknowledgements

This work was supported by the National Program of Sustainability I (Grant LO1204) of the Ministry of Education, Youth and Sports of the Czech Republic. We are very thankful to Dr. Michal Martinka and Dr. Marek Vaculík, Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava (Slovak Republic) for invaluable material help and excellent advice during sample preparation for transmission electron microscopy and to Prof. Yuichi Fujita (Nagoya, Japan) for providing antibodies against DPOR.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2018_1688_MOESM1_ESM.jpg (509 kb)
Photoactivation experiments at a light intensity of 20 μmol m-2 s-1 PAR in L. decidua (A) and P. abies (B). Chlorophyll a fluorescence rise measured at excitation light intensity of 7000 μmol photons m−2 s−1 PAR (650 nm) in dark-grown spruce cotyledons that were illuminated (20 μmol photons m−2 s−1, PAR) for different time periods (0, 1, 5 min and 1 h as indicated). Seedlings were dark-adapted for 30 min before the fluorescence measurement. Curves are normalized to F0 level, vertically shifted and plotted on a logarithmic time scale. The vertical lines indicate the position of K-step. Presented data are representatives of a total of 4–5 measurements. The values below each curve indicate average FV/FM, means ± s.d., n = 4-5 (JPG 509 KB)
468_2018_1688_MOESM2_ESM.jpg (568 kb)
Photoactivation experiments at a light intensity of 100 μmol m-2 s-1 PAR in L. decidua (A) and P. abies (B). Chlorophyll a fluorescence rise measured at excitation light intensity of 7000 μmol photons m−2 s−1 PAR (650 nm) in dark-grown spruce cotyledons that were illuminated (100 μmol photons m−2 s−1, PAR) for different time periods (0, 1, 5 min and 1 h as indicated). For details see legend of Fig.S1 (JPG 568 KB)
468_2018_1688_MOESM3_ESM.jpg (431 kb)
Photoactivation experiments at a light intensity of 1400 μmol m-2 s-1 PAR in L. decidua (A) and P. abies (B). Chlorophyll a fluorescence rise measured at excitation light intensity of 7000 μmol photons m−2 s−1 PAR (650 nm) in dark-grown spruce cotyledons that were illuminated (1400 μmol photons m−2 s−1, PAR) for different time periods (0, 1, 5 min and 1 h as indicated). For details see legend of Fig.S1 (JPG 431 KB)
468_2018_1688_MOESM4_ESM.jpg (84 kb)
Average number of thylakoids per granum. Means ± s.d., n = 10 (JPG 84 KB)
468_2018_1688_MOESM5_ESM.docx (14 kb)
Supplementary material 5 (DOCX 14 KB)

References

  1. Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol 43:87–100CrossRefGoogle Scholar
  2. Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:87–100CrossRefGoogle Scholar
  3. Breznenová K, Demko V, Pavlovič A, Gálová E, Balážová R, Hudák J (2010) Light-independent accumulation of essential chlorophyll biosynthesis- and photosynthesis-related proteins in Pinus mugo and Pinus sylvestris seedlings. Photosynthetica 48:16–22CrossRefGoogle Scholar
  4. Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010) Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burke DH, Raubeson LA, Alberti M, Hearst JE, Jordan ET, Kirch SA, Valinski AEC, Conant DS, Stein DB (1993) The chlL (frx) gene: phylogenetic distribution in vascular plants and DNA sequence from Polystichum acrostichoides (Pteridophyta) and Synechococcus sp. 7200 (Cyanobacteria). Pl Syst Evol 187:89–102CrossRefGoogle Scholar
  6. Cahoon AB, Timko MP (2000) Yellow-in-the-dark mutants of Chlamydomonas lack the ChlL subunit of light-independent protochlorophyllide reductase. Plant Cell 12:559–568CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chinn E, Silverthorne J (1993) Light-dependent chloroplast development and expression of a light-harvesting chlorophyll a/b-binding protein gene in the gymnosperm Ginkgo biloba. Plant Physiol 103:727–732CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dawson RCM, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research, 3rd edn. Oxford Science Publications, OxfordGoogle Scholar
  9. Demko V, Pavlovič A, Valková D, Slováková L, Grimm B, Hudák J (2009) A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta 230:165–176CrossRefPubMedGoogle Scholar
  10. Forreiter C, Apel K (1993) Light-independent and light-dependent protochlorophyllide-reducing activities of two distinct NADPH-protochlorophyllide oxidoreductase polypeptids in moutain pine (Pinus mugo). Planta 190:536–545CrossRefPubMedGoogle Scholar
  11. Franck F, Mathis P (1980) A short-lived intermediate in the photoenzymatic reduction of protochlorophyll(ide) into chlorophyll(ide) at a physiological temperature. Photochem Photobiol 32:799–803CrossRefGoogle Scholar
  12. Fujita Y, Bauer CE (2003) The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish K, Smith K, Guilard R (eds) Porphyrin handbook, vol 13, Chlorophylls and bilins: biosynthesis, synthesis, and degradation. Academic, San Diego, pp 109–156CrossRefGoogle Scholar
  13. Fujita Y, Takahashi Y, Chuganji M, Matsubara H (1992) The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant Cell Physiol 33:81–92Google Scholar
  14. Fujita Y, Takagi H, Hase T (1998) Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 39:177–185CrossRefPubMedGoogle Scholar
  15. Gabruk M, Mysliwa-Kurdziel B (2015) Light-dependent protochlorophyllide oxidoreductase: Phylogeny, regulation, and catalytic properties. Biochemistry 54:5255–5262CrossRefPubMedGoogle Scholar
  16. Garrone A, Archipowa N, Zipfel PF, Hermann G, Dietzek B (2015) Plant protochlorophyllide oxidoreductases A and B—catalytic efficiency and initial reaction steps. J Biol Chem 290:28530–28539CrossRefPubMedPubMedCentralGoogle Scholar
  17. Griffiths WT, Kay SA, Oliver RP (1985) The presence and photoregulation of protochlorophyllide reductase in green tissues. Plant Mol Biol 4:13–22CrossRefPubMedGoogle Scholar
  18. Griffiths WT, McHugh T, Blankenship RE (1996) The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Lett 398:235–238CrossRefPubMedGoogle Scholar
  19. Heyes DJ, Heathcote P, Rigby SEJ, Palacios MA, van Grondelle R, Hunter CN (2006) The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex. J Biol Chem 281:26847–26853CrossRefPubMedGoogle Scholar
  20. Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258CrossRefPubMedGoogle Scholar
  21. Hunsperger HM, Randhawa T, Cattolico RA (2015) Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 15:16CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jansson S, Virgin I, Gustafsson P, Andersson B, Quist G (1992) Light-induced changes of photosystem II activity in dark-grown Scots pine seedlings. Physiol Plantarum 84:6–12CrossRefGoogle Scholar
  23. Kamachi H, Tamura N, Yoshihira T, Oku T (1994) Photoactivation of the latent water-oxidizing complex in photosystem II membranes isolated from dark-grown spruce seedlings. Physiol Plantarum 91:747–753CrossRefGoogle Scholar
  24. Karpinska B, Karpinski S, Hällgren J-E (1997) The chlB gene encoding a subunit of light-independent protochlorophyllide reductase is edited in chloroplasts of conifers. Curr Genet 31:343–347CrossRefPubMedGoogle Scholar
  25. Koski VM, Smith JHC (1948) The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J Am Chem Soc 70:3558–3562CrossRefPubMedGoogle Scholar
  26. Kouřil R, Ilík P, Nauš J, Schoefs B (1999) On the limits of applicability of spectrophotometric and spectrofluorimetric methods for the determination of chlorophyll a/b ratio. Photosynth Res 62:107–116CrossRefGoogle Scholar
  27. Kusumi J, Sato A, Tachida H (2006) Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja. Mol Biol Evol 23:941–948CrossRefPubMedGoogle Scholar
  28. Lazár D (1999) Chlorophyll a fluorescence induction. BBA Bioenerg 1412:1–28CrossRefGoogle Scholar
  29. Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–33CrossRefGoogle Scholar
  30. Lazár D, Ilík P (1997) High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. Plant Sci 124:159–164CrossRefGoogle Scholar
  31. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  32. Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC (eds) Chlorophyll a fluorescence a signature of photosynthesis—advances in photosynthesis and respiration series, vol 19. Springer, Dordrecht, pp 713–736Google Scholar
  33. Mariani P, De Carli ME, Rascio N, Baldan B, Casadoro G, Bodner M, Larcher W (1990) Synthesis of chlorophyll and photosynthetic competence in etiolated and greening seedlings of Larix decidua as compared with Picea abies. J Plant Physiol 137:5–14CrossRefGoogle Scholar
  34. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165CrossRefPubMedGoogle Scholar
  35. Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH:protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974CrossRefPubMedGoogle Scholar
  36. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  37. Mukai Y, Tazaki K, Fujii T, Yamamoto N (1992) Light-independent expression of three photosynthetic genes cab, rbcS and rbcL in coniferous plants. Plant Cell Physiol 33:859–866Google Scholar
  38. Mullet JE, Burke JJ, Arntzen CJ (1980a) Chlorophyll proteins of photosystem I. Plant Physiol 65:814–822CrossRefPubMedPubMedCentralGoogle Scholar
  39. Muraki N, Nomata J, Ebata K, Mizoguchi T, Schiba T, Temiaki H, Kurisu G, Fujita Y (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114CrossRefPubMedGoogle Scholar
  40. Muramatsu S, Kojima K, Igasaki T, Azumi Y, Shinohara K (2001) Inhibition of light-independent synthesis of chlorophyll in pine cotyledons at low temperature. Plant Cell Physiol 42:868–872CrossRefPubMedGoogle Scholar
  41. Nakatani HS, Ke B, Dolan E, Arntzen CJ (1984) Identity of the photosystem II reaction center polypeptide. BBA Bioenergetics 765:347–352CrossRefGoogle Scholar
  42. Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2004) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382CrossRefPubMedGoogle Scholar
  43. Nomata J, Kitashima M, Inoue K, Fujita Y (2006) Nitrogenase Fe protein-like Fe–S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Lett 580:6151–6154CrossRefPubMedGoogle Scholar
  44. Nomata J, Terauchi K, Fujita Y (2016) Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochem Biophys Res Commun 470:704–709CrossRefPubMedGoogle Scholar
  45. Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FESB Lett 474:133–136CrossRefGoogle Scholar
  46. Pavlovič A, Demko V, Durchan M, Hudák J (2009a) Feeding with aminolevulinic acid increased chlorophyll content in Norway spruce (Picea abies) in the dark. Photosynthetica 47:631–634CrossRefGoogle Scholar
  47. Pavlovič A, Slováková Ľ, Demko V, Durchan M, Mikulová K, Hudák J (2009b) Chlorophyll biosynthesis and chloroplast development in etiolated seedlings of Ginkgo biloba L. Photosynthetica 47:510–516CrossRefGoogle Scholar
  48. Pavlovič A, Stolárik T, Nosek L, Kouřil R, Ilík P (2016) Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. BBA Bioenerg 1857:799–809CrossRefGoogle Scholar
  49. Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624CrossRefPubMedGoogle Scholar
  50. Richard M, Tremblay C, Bellemare G (1994) Chloroplastic genomes of Ginkgo biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light - independent protochlorophyllide reductase. Curr Genet 26:159–165CrossRefGoogle Scholar
  51. Ryberg H, Axelsson L, Widell K-O, Virgin HI (1980) Chlorophyll b accumulation and grana formation in low intensities of red light. Physiol Plantarum 49:431–436CrossRefGoogle Scholar
  52. Schägger H (2006) Tricine-SDS-page. Nat Protoc 1:16–22CrossRefPubMedGoogle Scholar
  53. Schoefs B, Franck F (1998) Chlorophyll synthesis in dark-grown pine primary needles. Plant Physiol 118:1159–1168CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanism and evolution. Photochem Photobiol 78:543–557CrossRefPubMedGoogle Scholar
  55. Selstam E, Widell A, Johansson LB (1987) A comparison of prolamellar bodies from wheat, Scots pine and Jeffrey pine. Pigment spectra and properties of protochlorophyllide oxidoreductase. Physiol Plant 70:209–214CrossRefGoogle Scholar
  56. Shinohara K, Murakami A, Fujita Y (1992a) Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons. Plant Physiol 98:39–43CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shinohara K, Ono T, Inoue Y (1992b) Photoactivation of oxygen evolving enzyme in dark-grown pine cotyledons: relationship between assembly of photosystem II proteins and integration of manganese and calcium. Plant Cell Physiol 33:281–289CrossRefGoogle Scholar
  58. Skinner JS, Timko MP (1998) Loblolly pine (Pinus taeda) contains multiple expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39:795–806CrossRefPubMedGoogle Scholar
  59. Skinner JS, Timko MP (1999) Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine. Plant Mol Biol 39:577–592CrossRefPubMedGoogle Scholar
  60. Solymosi K, Schoefs B (2010) Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res 105:143–166CrossRefPubMedGoogle Scholar
  61. Solymosi K, Vitányi B, Hideg E, Böddi B (2007) Etiolation symptoms in sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the achene. Ann Bot 99:857–867CrossRefPubMedPubMedCentralGoogle Scholar
  62. Srivastava A, Guissé B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by fast polyphasic chlorophyll a fluorescence transient: OKJIP. BBA Bioenerg 1320:95–106CrossRefGoogle Scholar
  63. Stolárik T, Hedtke B, Šantrůček J, Ilík P, Grimm B, Pavlovič A (2017) Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce. Photosynth Res 132:165–179CrossRefPubMedGoogle Scholar
  64. Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155CrossRefGoogle Scholar
  65. Su Q, Frick G, Armstrong G, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47:805–813CrossRefGoogle Scholar
  66. Suzuki JY, Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4:929–940CrossRefPubMedPubMedCentralGoogle Scholar
  67. Suzuki T, Takio S, Yamamoto I, Satoh T (2001) Characterization of cDNA of the liverwort phytochrome gene, and phytochrome involvement in the light-dependent and light-independent protochlorophyllide oxidoreductase gene expression in Marchantia paleacea var. diptera. Plant Cell Physiol 42:576–852CrossRefPubMedGoogle Scholar
  68. Tóth SZ, Schansker G, Garab G, Strasser RJ (2007) Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. BBA Bioenerg 1767:295–305CrossRefGoogle Scholar
  69. Ueda M, Tanaka A, Sugimoto K, Shikanai T, Nishimura Y (2014) chlB requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L. Genome Biol Evol 6:620–628CrossRefPubMedPubMedCentralGoogle Scholar
  70. Walles B, Hudák J (1975) A comparative study of chloroplast morphogenesis in seedlings of some conifers (Larix decidua, Pinus sylvestris and Picea abies). Stud Forest Suec 127:1–22Google Scholar
  71. Xue X, Wang Q, Qu Y, Wu H, Dong F, Cao H, Wang H-L, Xiao J, Shen Y, Wan Y (2017) Development of photosynthetic apparatus of Cunninghamia lanceolata in light and darkness. New Phytol 213:300–313CrossRefPubMedGoogle Scholar
  72. Yamamoto N, Mukai Y, Matsuoka M, Kano-Muramaki Y, Tanaka Y, Ohashi Y, Ozeki Y, Odani K (1991) Light-independent expression of cab and rbcS genes in dark-grown pine seedlings. Plant Physiol 95:379–383CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2011) Functional evaluation of a nitrogenase-like protochlorophyllide reductase encoded by the chloroplast DNA of Physcomitrella patens in the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 52:1983–1993CrossRefPubMedGoogle Scholar
  74. Yamamoto H, Kusumi J, Yamakawa H, Fujita Y (2017) The effect of two amino acid residue substitutions via RNA editing on dark-operative protochlorophyllide oxidoreductase in the black pine chloroplasts. Sci Rep 7:2377CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biophysics, Centre of Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations