Skip to main content
Log in

Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Air-drying, cooling and freezing leaf samples rich in isoprenoid content evaporates isoprenoids and consequently causes an underestimation of the leaf dry matter content.

Abstract

Foliage isoprenoid content or essential oil content is a key plant characteristic important in plant science, but also for food, cosmetic and pharmaceutical industry. Commonly, the amount of foliage chemicals is normalized with respect to leaf dry mass (content per dry mass). However, the protocols for foliage drying have received little attention. In particular, volatile and semi-volatile isoprenoids and other compounds with low boiling point may partly volatilize during drying, reducing both isoprenoid and leaf dry matter contents, thereby potentially underestimating the content of volatiles and overestimating that of non-volatile constituents. Three leaf preservation (flash freezing in liquid nitrogen, freezing at −82 and at −20 °C, and cooling at 4 °C) and two leaf desiccation (freeze-drying at −54 °C and 1.2 mbar, and air-drying at 30, 40 60, 70, 80, 100, 110, 125, 150, 200, and 300 °C) procedures were applied to replicate leaves, and the leaf dry matter content as well as the leaf isoprenoid content was measured afterwards. The results of this experiment suggested that freeze-drying method (FD) performed the best leaf isoprenoid preservation followed by FF method, whilst air-drying methods performed a dramatic isoprenoid loss in the leaf samples, as well as preserving the leaves at freezing and cooling temperatures. Leaf isoprenoid content and leaf dry to fresh mass ratio were correlated and there were evidences of leaf dry matter content (LDMC) miscalculation in isoprenoid-storing species when using traditional air-drying methods and preservation of samples, possibly related to the isoprenoid loss as well as other volatile compounds. In addition, losses of high C content volatiles and respiration of sugars and carbohydrate pyrolysis with low carbon content may differently affect the bulk leaf C content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akah PA, Ezike AC, Nwafor SV, Okoh CO, Enwerem NM (2003) Evaluation of the anti-asthmatic property of Asystasia gangetica leaf extracts. J Ethnopharmacol 89:25–36. doi:10.1016/S0378-8741(03)00227-7

    Article  CAS  PubMed  Google Scholar 

  • Alessio GA, Peñuelas J, De Lillis M, Llusià J (2008) Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol 10:123–128. doi:10.1111/j.1438-8677.2007.00011.x

    Article  CAS  PubMed  Google Scholar 

  • Buchner O, Neuner G (2011) Winter frost resistance of Pinus cembra measured in situ at the alpine timberline as affected by temperature conditions. Tree Physiol 31:1217–1227. doi:10.1093/treephys/tpr103

    Article  PubMed  Google Scholar 

  • Castrillo M, Vizcaino D, Moreno E, Latorraca Z (2005) Specific leaf mass, fresh: dry weight ratio, sugar and protein contents in species of Lamiaceae from different light environments. Rev Biol Trop 53:23–28

    CAS  PubMed  Google Scholar 

  • Copolovici L, Kännaste A, Niinemets Ü (2009) Gas chromatography-mass spectrometry method for determination of monoterpene and sesquiterpene emissions from stressed plants. Stud U Babes-Bol Che 54:329–339

    CAS  Google Scholar 

  • Correia MJ, Coelho D, David MM (2001) Response to seasonal drought in three cultivars of Ceratonia siliqua: leaf growth and water relations. Tree Physiol 21:645–653

    Article  CAS  PubMed  Google Scholar 

  • Davey MC, Ellis-Evans JC (1996) The influence of water content on the light climate within Antarctic mosses characterized using an optical microprobe. J Bryol 19:235–242

    Google Scholar 

  • Díaz-Maroto MC, Pérez-Coello MS, Viñas MAG, Cabezudo MD (2003) Influence of drying on the flavor quality of spearmint (Mentha spicata L.) J Agr. Food Chem 51:1265–1269. doi:10.1021/Jf0208505l

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C-3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189. doi:10.1093/Aob/Mcf027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Font R, Conesa JA, Molto J, Muñoz M (2009) Kinetics of pyrolysis and combustion of pine needles and cones. J Anal Appl Pyrol 85:276–286. doi:10.1016/j.jaap.2008.11.015

    Article  CAS  Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695. doi:10.1046/j.0269-8463.2001.00563.x

    Article  Google Scholar 

  • Haapanala S, Ekberg A, Hakola H, Tarvainen V, Rinne J, Hellen H, Arneth A (2009) Mountain birch—potentially large source of sesquiterpenes into high latitude atmosphere. Biogeosciences 6:2709–2718

    Article  CAS  Google Scholar 

  • Hakola H, Laurila T, Lindfors V, Hellen H, Gaman A, Rinne J (2001) Variation of the VOC emission rates of birch species during the growing season Boreal. Environ Res 6:237–249

    CAS  Google Scholar 

  • Hinckley TM, Bruckerhoff DN (1975) The effects of drought on water relations and stem shrinkage of Quercus alba. Can J Bot 53:62–72. doi:10.1139/b75-009

    Article  Google Scholar 

  • Hüve K, Bichele I, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126. doi:10.1111/j.1365-3040.2010.02229.x

    Article  PubMed  Google Scholar 

  • Jeni K, Yapa M, Rattanadecho P (2010) Design and analysis of the commercialized drier processing using a combined unsymmetrical double-feed microwave and vacuum system (case study: tea leaves). Chem Eng Process 49:389–395. doi:10.1016/j.cep.2010.03.003

    Article  CAS  Google Scholar 

  • Keenan T, Niinemets Ü, Sabate S, Gracia C, Peñuelas J (2009) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties Atmos. Chem Phys 9:4053–4076. doi:10.5194/acp-9-4053-2009

    CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88. doi:10.1023/A:1006127516791

    Article  CAS  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Cecinato A (1998) Measurement of isoprenoid content in leaves of Mediterranean Quercus spp. by a novel and sensitive method and estimation of the isoprenoid partition between liquid and gas phase inside the leaves. Plant Sci 136:25–30. doi:10.1016/S0168-9452(98)00092-2

    Article  CAS  Google Scholar 

  • Maisuthisakul P, Gordon MH, Pongsawatmanit R, Suttajit M (2007) Enhancing the oxidative stability of rice crackers by addition of the ethanolic extract of phytochemicals from Cratoxylum formosum Dyer. Asia Pac J Clin Nutr 16:37–42

    CAS  PubMed  Google Scholar 

  • Medina E, Francisco M (1994) Photosynthesis and water relations of savanna tree species differing in leaf phenology. Tree Physiol 14:1367–1381

    Article  PubMed  Google Scholar 

  • Niinemets Ü (1997) Energy requirement for foliage construction depends on tree size in young Picea abies trees. Trees Struct Funct 11:420–431

    Google Scholar 

  • Niinemets Ü, Reichstein M (2002) A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Glob Biogeochem Cycle 16:1110. doi:10.1029/2002GB001927

    Article  Google Scholar 

  • Niinemets Ü, Cescatti A, Christian R (2004) Constraints on light interception efficiency due to shoot architecture in broad-leaved Nothofagus species. Tree Physiol 24:617–630

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007) Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann Bot 100:283–303. doi:10.1093/Aob/Mcm107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niinemets Ü et al (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8:2209–2246

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage Front. Plant Sci. doi:10.3389/Fpls.2013.00262

    Google Scholar 

  • Noe SM, Hüve K, Niinemets Ü, Copolovici L (2012) Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest Atmos. Chem Phys 12:3909–3926. doi:10.5194/acp-12-3909-2012

    CAS  Google Scholar 

  • Ormeño E, Fernández C, Mevy JP (2007) Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68:840–852. doi:10.1016/j.phytochem.2006.11.033

    Article  PubMed  Google Scholar 

  • Ormeño E, Goldstein A, Niinemets Ü (2011) Extracting and trapping biogenic volatile organic compounds stored in plant species Trac-Trend. Anal Chem 30:978–989. doi:10.1016/j.trac.2011.04.006

    Google Scholar 

  • Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404. doi:10.1016/j.tree.2004.06.002

    Article  PubMed  Google Scholar 

  • Poorter H (1994) Construction costs and payback time of biomass: a whole plant perspective. In: Roy J, Garnier E (eds) A whole plant perspective on carbon-nitrogen interactions. SPB Academic Publishing, The Hague, pp 111–127

    Google Scholar 

  • Popp M, Lied W, Meyer AJ, Richter A, Schiller P, Schwitte H (1996) Sample preservation for determination of organic compounds: microwave versus freeze-drying. J Exp Bot 47:1469–1473. doi:10.1093/jxb/47.10.1469

    Article  CAS  Google Scholar 

  • Purahong W et al (2014) Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from Central European Forests. Plos One. doi:10.1371/journal.pone.0093700

    PubMed Central  PubMed  Google Scholar 

  • Régimbal J-M, Collin G (1994) Essential oil analysis of balsam fir Abies balsamea (L.) Mill. J Essent Oil Res 6:229–238. doi:10.1080/10412905.1994.9698369

    Article  Google Scholar 

  • Sharkey TD, Bernacchi CJ (2012) Photosynthetic responses to high temperature. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological and ecological approach. Cambridge University Press, New York, pp 290–298

    Chapter  Google Scholar 

  • Tsitsimpikou C, Petrakis PV, Ortiz A, Harvala C, Roussis V (2001) Volatile needle terpenoids of six Pinus species. J Essent Oil Res 13:174–178

    Article  CAS  Google Scholar 

  • Tuba Z, Csintalan Z, Proctor MCF (1996) Photosynthetic responses of a moss, Tortula ruralis, ssp ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration. New Phytol 133:353–361. doi:10.1111/j.1469-8137.1996.tb01902.x

    Article  Google Scholar 

  • Vile D et al (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136. doi:10.1093/Aob/Mci264

    Article  PubMed Central  PubMed  Google Scholar 

  • Vos J, Groenwold J (1988) Water relations of potato leaves. 1. Diurnal changes, gradients in the canopy, and effects of leaf-insertion number, cultivar and drought. Ann Bot 62:363–371

    Google Scholar 

  • Whittaker A, Bochicchio A, Vazzana C, Lindsey G, Farrant J (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52:961–969. doi:10.1093/jexbot/52.358.961

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Bassett C, Gusta LV (2003) An overview of cold hardiness in woody plants: seeing the forest through the trees. Hortscience 38:952–959

    Google Scholar 

  • Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/Nature02403

    Article  CAS  PubMed  Google Scholar 

  • Zeiller E, Benetka E, Koller M, Schorn R (2007) Dry mass determination: what role does it play in combined measurement uncertainty? A case study using IAEA 392 and IAEA 413 algae reference materials Accredit. Qual Assur 12:295–302. doi:10.1007/s00769-006-0248-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Internationalization Program DoRa for doctoral studies through the European Social Fund, and the Estonian Ministry of Science and Education (institutional grant IUT8-3), the European Commission through the European Regional Fund: the Estonian Center of Excellence in Environmental Adaptation (project F11100PKTF), and the Environmental Conservation and Environmental Technology R&D Programme: BioAtmos (project 8-2/T13006PKTF). We thank Dana Copolovici, Milvi Purgas and Ülle Püttsepp for helping with their lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Portillo-Estrada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H. Rennenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portillo-Estrada, M., Copolovici, L. & Niinemets, Ü. Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves. Trees 29, 1805–1816 (2015). https://doi.org/10.1007/s00468-015-1262-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1262-8

Keywords

Navigation