Advertisement

Treatment of hyperphosphatemia: the dangers of high PTH levels

  • Justine BacchettaEmail author
Pro/Con Debate
Part of the following topical collections:
  1. What’s New in Chronic Kidney Disease

Abstract

The control of secondary hyperparathyroidism (SHPT) in pediatric chronic kidney disease is of utmost importance. Even though parathyroid hormone (PTH) is an important biomarker of mineral and bone disorders associated to CKD (CKD-MBD), calcium, phosphate, alkaline phosphatase, and vitamin D are also crucial and should be assessed together. In pediatric dialysis, high PTH levels have been associated with impaired longitudinal growth, bone disease, cardiovascular comorbidities, left ventricular hypertrophy, anemia, and even mortality (when PTH levels were above 500 pg/mL, i.e., 8.3-fold the upper normal limit (UNL)). As such, high PTH levels are for sure deleterious, but too low PTH levels have also been shown to impair growth and to promote vascular calcifications because of the underlying adynamic bone. This manuscript is part of a pros and cons debate for keeping PTH levels within the normal range in pediatric CKD, focusing on the pros. High bone turnover lesions can occur at lower PTH levels than “current” guidelines would suggest; thus, PTH alone is not a good predictor of the underlying osteodystrophy. PTH results can vary locally depending on the assay. Existing guidelines for PTH targets are conflicting and based on a very little evidence. However, the 120–180 pg/mL (2- to 3-fold the UNL) range is common to most of the guidelines; it seems to be a reasonable target in children undergoing dialysis, even though it does not correspond to “normal” PTH levels. As always, the philosophy of PTH levels in pediatric dialysis may be balanced, i.e., “not too low, not too high, and keep phosphate under control.”

Keywords

Calcium CKD-MBD Children Dialysis Growth Osteodystrophy Phosphate PTH Vascular calcifications Vitamin D 

Notes

Acknowledgments

JB would like to acknowledge Bruno Ranchin, MD, Hôpital Femme Mère Enfant, Bron, France, for his careful review of this manuscript.

Funding information

JB received consultancy and speaker fees from Amgen and Vifor, and research grants from Amgen and Crinex.

References

  1. 1.
    Mitsnefes MM (2012) Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol 23:578–585.  https://doi.org/10.1681/ASN.2011111115 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483.  https://doi.org/10.1056/NEJM200005183422003 CrossRefPubMedGoogle Scholar
  3. 3.
    Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945–1953.  https://doi.org/10.1038/sj.ki.5000414 CrossRefPubMedGoogle Scholar
  4. 4.
    Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB (2017) Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int 92:26–36.  https://doi.org/10.1016/j.kint.2017.04.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Souberbielle J-C, Boutten A, Carlier M-C, Chevenne D, Coumaros G, Lawson-Body E, Massart C, Monge M, Myara J, Parent X, Plouvier E, Houillier P (2006) Inter-method variability in PTH measurement: implication for the care of CKD patients. Kidney Int 70:345–350.  https://doi.org/10.1038/sj.ki.5001606 CrossRefPubMedGoogle Scholar
  6. 6.
    Hocher B, Oberthür D, Slowinski T, Querfeld U, Schaefer F, Doyon A, Tepel M, Roth HJ, Grön HJ, Reichetzeder C, Betzel C, Armbruster FP (2013) Modeling of oxidized PTH (oxPTH) and non-oxidized PTH (n-oxPTH) receptor binding and relationship of oxidized to non-oxidized PTH in children with chronic renal failure, adult patients on hemodialysis and kidney transplant recipients. Kidney Blood Press Res 37:240–251.  https://doi.org/10.1159/000350149 CrossRefPubMedGoogle Scholar
  7. 7.
    Vervloet MG, Brandenburg VM, CKD-MBD working group of ERA-EDTA (2017) Circulating markers of bone turnover. J Nephrol 30:663–670.  https://doi.org/10.1007/s40620-017-0408-8 CrossRefGoogle Scholar
  8. 8.
    Evenepoel P, Bover J, Ureña Torres P (2016) Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int 90:1184–1190.  https://doi.org/10.1016/j.kint.2016.06.041 CrossRefPubMedGoogle Scholar
  9. 9.
    Rees L, Shroff R (2015) The demise of calcium-based phosphate binders-is this appropriate for children? Pediatr Nephrol 30:2061–2071.  https://doi.org/10.1007/s00467-014-3017-y CrossRefPubMedGoogle Scholar
  10. 10.
    Borzych D, Rees L, Ha IS, Bak M, Rees L, Cano F, Munarriz RL, Chua A, Pesle S, Emre S, Urzykowska A, Quiroz L, Ruscasso JD, White C, Pape L, Ramela V, Printza N, Vogel A, Kuzmanovska D, Simkova E, Müller-Wiefel DE, Sander A, Warady BA, Schaefer F, International Pediatric Peritoneal Dialysis Network (IPPN) Registry (2010) The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int 78:1295–1304.  https://doi.org/10.1038/ki.2010.316 CrossRefPubMedGoogle Scholar
  11. 11.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl:S1–S130.  https://doi.org/10.1038/ki.2009.188 CrossRefGoogle Scholar
  12. 12.
    Klaus G, Watson A, Edefonti A, Fischbach M, Rönnholm K, Schaefer F, Simkova E, Stefanidis CJ, Strazdins V, Vande Walle J, Schröder C, Zurowska A, Ekim M, European Pediatric Dialysis Working Group (EPDWG) (2006) Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol 21:151–159.  https://doi.org/10.1007/s00467-005-2082-7 CrossRefPubMedGoogle Scholar
  13. 13.
    Wesseling-Perry K, Pereira RC, Sahney S, Gales B, Wang HJ, Elashoff R, Jüppner H, Salusky IB (2011) Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism. Kidney Int 79:112–119.  https://doi.org/10.1038/ki.2010.352 CrossRefPubMedGoogle Scholar
  14. 14.
    Waller S, Shroff R, Freemont AJ, Rees L (2008) Bone histomorphometry in children prior to commencing renal replacement therapy. Pediatr Nephrol 23:1523–1529.  https://doi.org/10.1007/s00467-008-0838-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Shroff R, Wan M, Nagler EV, Bakkaloglu S, Cozzolino M, Bacchetta J, Edefonti A, Stefanidis CJ, Vande Walle J, Ariceta G, Klaus G, Haffner D, Schmitt CP, European Society for Paediatric Nephrology Chronic Kidney Disease Mineral and Bone Disorders and Dialysis Working Groups (2017) Clinical practice recommendations for treatment with active vitamin D analogues in children with chronic kidney disease Stages 2-5 and on dialysis. Nephrol Dial Transplant 32:1114–1127.  https://doi.org/10.1093/ndt/gfx080 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    KDOQI Work Group (2009) KDOQI Clinical Practice Guideline for Nutrition in Children with CKD: 2008 update. Executive summary. Am J Kidney Dis 53:S11-104.  https://doi.org/10.1053/j.ajkd.2008.11.017 CrossRefGoogle Scholar
  17. 17.
    Preka E, Ranchin B, Doyon A, Vierge M, Ginhoux T, Kassai B, Bacchetta J (2018) The interplay between bone and vessels in pediatric CKD: lessons from a single-center study. Pediatr Nephrol. 33(9):1565–1575.  https://doi.org/10.1007/s00467-018-3978-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Hahn D, Hodson EM, Craig JC (2015) Interventions for metabolic bone disease in children with chronic kidney disease. Cochrane Database Syst Rev CD008327.  https://doi.org/10.1002/14651858.CD008327.pub2
  19. 19.
    Shroff R (2013) Phosphate is a vascular toxin. Pediatr Nephrol 28:583–593.  https://doi.org/10.1007/s00467-012-2347-x CrossRefPubMedGoogle Scholar
  20. 20.
    Shroff R, Long DA, Shanahan C (2013) Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol 24:179–189.  https://doi.org/10.1681/ASN.2011121191 CrossRefPubMedGoogle Scholar
  21. 21.
    Kuro-o M (2010) A potential link between phosphate and aging--lessons from Klotho-deficient mice. Mech Ageing Dev 131:270–275.  https://doi.org/10.1016/j.mad.2010.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gutiérrez OM, Anderson C, Isakova T, Scialla J, Negrea L, Anderson AH, Bellovich K, Chen J, Robinson N, Ojo A, Lash J, Feldman HI, Wolf M, CRIC Study Group (2010) Low socioeconomic status associates with higher serum phosphate irrespective of race. J Am Soc Nephrol 21:1953–1960.  https://doi.org/10.1681/ASN.2010020221 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, Chavkin NW, Rahman M, Wahl P, Amaral AP, Hamano T, Master SR, Nessel L, Chai B, Xie D, Kallem RR, Chen J, Lash JP, Kusek JW, Budoff MJ, Giachelli CM, Wolf M, Chronic Renal Insufficiency Cohort Study Investigators (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83:1159–1168.  https://doi.org/10.1038/ki.2013.3 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pereira RC, Jüppner H, Gales B, Salusky IB, Wesseling-Perry K (2015) Osteocytic protein expression response to doxercalciferol therapy in pediatric dialysis patients. PLoS One 10:e0120856.  https://doi.org/10.1371/journal.pone.0120856 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, Drüeke TB, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Stolina M, Dehmel B, Goodman WG, Floege J, Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators (2015) Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation 132:27–39.  https://doi.org/10.1161/CIRCULATIONAHA.114.013876 CrossRefPubMedGoogle Scholar
  26. 26.
    Oliveira RB, Cancela ALE, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, Carvalho AB, Jorgetti V, Canziani ME, Moysés RM (2010) Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol 5:286–291.  https://doi.org/10.2215/CJN.05420709 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liabeuf S, Ryckelynck J-P, El Esper N, Ureña P, Combe C, Dussol B, Fouque D, Vanhille P, Frimat L, Thervet E, Mentaverri R, Prié D, Choukroun G (2017) Randomized clinical trial of sevelamer carbonate on serum klotho and fibroblast growth factor 23 in CKD. Clin J Am Soc Nephrol 12:1930–1940.  https://doi.org/10.2215/CJN.03030317 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Iguchi A, Kazama JJ, Yamamoto S, Yoshita K, Watanabe Y, Iino N, Narita I (2015) Administration of ferric citrate hydrate decreases circulating FGF23 levels independently of serum phosphate levels in hemodialysis patients with iron deficiency. Nephron 131:161–166.  https://doi.org/10.1159/000440968 CrossRefPubMedGoogle Scholar
  29. 29.
    Bacchetta J, Bardet C, Prié D (2019) Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism.  https://doi.org/10.1016/j.metabol.2019.01.006
  30. 30.
    Sohn WY, Portale AA, Salusky IB, Zhang H, Yan LL, Ertik B, Shahinfar S, Lee E, Dehmel B, Warady BA (2019) An open-label, single-dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of cinacalcet in pediatric subjects aged 28 days to < 6 years with chronic kidney disease receiving dialysis. Pediatr Nephrol 34:145–154.  https://doi.org/10.1007/s00467-018-4054-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Warady BA, Iles JN, Ariceta G, Dehmel B, Hidalgo G, Jiang X, Laskin B, Shahinfar S, Vande Walle J, Schaefer F (2018) A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet in pediatric patients with chronic kidney disease and secondary hyperparathyroidism receiving dialysis. Pediatr Nephrol. 34(3):475–486.  https://doi.org/10.1007/s00467-018-4116-y CrossRefPubMedGoogle Scholar
  32. 32.
    Kim J, Ross JS, Kapczynski A (2018) Pediatric exclusivity and regulatory authority: implications of amgen v HHS. JAMA 319:21–22.  https://doi.org/10.1001/jama.2017.16477 CrossRefPubMedGoogle Scholar
  33. 33.
    Bacchetta J, Schmitt CP, Ariceta G, Bakkaloglu S, Groothoof J, Wan M, Vervloet M, Shroff R, Haffner D; ESPN and CKD-MBD working groups of the ERA-EDTA (2019) Cinacalcet use in paediatric dialysis: a position statement from the European Society for Paediatric Nephrology and the Chronic Kidney Disease-Mineral and Bone Disorders Working Group of the ERA-EDTA. Nephrol Dial Transplant.  https://doi.org/10.1093/ndt/gfz159
  34. 34.
    Wang G, Liu H, Wang C, Ji X, Gu W, Mu Y (2018) Cinacalcet versus placebo for secondary hyperparathyroidism in chronic kidney disease patients: a meta-analysis of randomized controlled trials and trial sequential analysis. Sci Rep 8:3111.  https://doi.org/10.1038/s41598-018-21397-8 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Moe SM, Abdalla S, Chertow GM, Parfrey PS, Block GA, Correa-Rotter R, Floege J, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Dehmel B, Goodman WG, Drüeke TB, Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators (2015) Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol 26:1466–1475.  https://doi.org/10.1681/ASN.2014040414 CrossRefPubMedGoogle Scholar
  36. 36.
    Portale AA, Wolf MS, Messinger S, Perwad F, Jüppner H, Warady BA, Furth SL, Salusky IB (2016) Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol 11:1989–1998.  https://doi.org/10.2215/CJN.02110216 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378.  https://doi.org/10.1038/ki.2011.47 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shroff R, Wan M, Nagler EV, Bakkaloglu S, Fischer DC, Bishop N, Cozzolino M, Bacchetta J, Edefonti A, Stefanidis CJ, Vande Walle J, Haffner D, Klaus G, Schmitt CP, European Society for Paediatric Nephrology Chronic Kidney Disease Mineral and Bone Disorders and Dialysis Working Groups (2017) Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2-5 and on dialysis. Nephrol Dial Transplant 32:1098–1113.  https://doi.org/10.1093/ndt/gfx065 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shroff R, Wan M, Gullett A, Ledermann S, Shute R, Knott C, Wells D, Aitkenhead H, Manickavasagar B, van't Hoff W, Rees L (2012) Ergocalciferol supplementation in children with CKD delays the onset of secondary hyperparathyroidism: a randomized trial. Clin J Am Soc Nephrol 7:216–223.  https://doi.org/10.2215/CJN.04760511 CrossRefPubMedGoogle Scholar
  40. 40.
    Wetzsteon RJ, Kalkwarf HJ, Shults J, Zemel BS, Foster BJ, Griffin L, Strife CF, Foerster DL, Jean-Pierre DK, Leonard MB (2011) Volumetric bone mineral density and bone structure in childhood chronic kidney disease. J Bone Miner Res 26:2235–2244.  https://doi.org/10.1002/jbmr.427 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Denburg MR, Tsampalieros AK, de Boer IH, Shults J, Kalkwarf HJ, Zemel BS, Foerster D, Stokes D, Leonard MB (2013) Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease. J Clin Endocrinol Metab 98:1930–1938.  https://doi.org/10.1210/jc.2012-4188 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Haffner D, Schaefer F (2013) Searching the optimal PTH target range in children undergoing peritoneal dialysis: new insights from international cohort studies. Pediatr Nephrol 28:537–545.  https://doi.org/10.1007/s00467-012-2270-1 CrossRefPubMedGoogle Scholar
  43. 43.
    Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408.  https://doi.org/10.1172/JCI46122 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Denburg MR, Kumar J, Jemielita T, Brooks ER, Skversky A, Portale AA, Salusky IB, Warady BA, Furth SL, Leonard MB (2016) Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol 27:543–550.  https://doi.org/10.1681/ASN.2015020152 CrossRefPubMedGoogle Scholar
  45. 45.
    Bakkaloglu SA, Wesseling-Perry K, Pereira RC, Gales B, Wang HJ, Elashoff RM, Salusky IB (2010) Value of the new bone classification system in pediatric renal osteodystrophy. Clin J Am Soc Nephrol 5:1860–1866.  https://doi.org/10.2215/CJN.01330210 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wesseling-Perry K, Pereira RC, Tseng C-H, Elashoff R, Zaritsky JJ, Yadin O, Sahney S, Gales B, Juppner H, Salusky IB (2012) Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin J Am Soc Nephrol 7:146–152.  https://doi.org/10.2215/CJN.05940611 CrossRefPubMedGoogle Scholar
  47. 47.
    Bacchetta J, Wesseling-Perry K, Kuizon B, Pereira RC, Gales B, Wang HJ, Elashoff R, Salusky IB (2013) The skeletal consequences of growth hormone therapy in dialyzed children: a randomized trial. Clin J Am Soc Nephrol 8:824–832.  https://doi.org/10.2215/CJN.00330112 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bacchetta J, Harambat J, Cochat P, Salusky IB, Wesseling-Perry K (2012) The consequences of chronic kidney disease on bone metabolism and growth in children. Nephrol Dial Transplant 27:3063–3071.  https://doi.org/10.1093/ndt/gfs299 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105CrossRefGoogle Scholar
  50. 50.
    Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, Ellins EA, Storry C, Ridout D, Deanfield J, Rees L (2007) Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol 18:2996–3003.  https://doi.org/10.1681/ASN.2006121397 CrossRefPubMedGoogle Scholar
  51. 51.
    Jung S, Querfeld U, Müller D, Rudolph B, Peters H, Krämer S (2012) Submaximal suppression of parathyroid hormone ameliorates calcitriol-induced aortic calcification and remodeling and myocardial fibrosis in uremic rats. J Hypertens 30:2182–2191.  https://doi.org/10.1097/HJH.0b013e328357c049 CrossRefPubMedGoogle Scholar
  52. 52.
    Russo D, Morrone L, Di Iorio B, Andreucci M, De Gregorio MG, Errichiello C, Russo L, Locatelli F (2015) Parathyroid hormone may be an early predictor of low serum hemoglobin concentration in patients with not advanced stages of chronic kidney disease. J Nephrol 28:701–708.  https://doi.org/10.1007/s40620-014-0129-1 CrossRefPubMedGoogle Scholar
  53. 53.
    Salusky IB, Ramirez JA, Oppenheim W, Gales B, Segre GV, Goodman WG (1994) Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int 45:253–258CrossRefGoogle Scholar

Copyright information

© IPNA 2019

Authors and Affiliations

  1. 1.Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du PhosphoreHôpital Femme Mère EnfantBron CedexFrance
  2. 2.Université de LyonLyonFrance
  3. 3.INSERM 1033 Research UnitUniversité de LyonLyonFrance

Personalised recommendations