Should we abandon GFR in the decision to initiate chronic dialysis?

  • Evgenia PrekaEmail author
  • Lesley Rees
Educational Review
Part of the following topical collections:
  1. What's New in Dialysis


The best time to start chronic dialysis during the course of CKD stage 5 is controversial. The first randomised control trial of dialysis initiation either in early or late CKD stage 5 in adults (IDEAL study), and 3 studies from the two largest paediatric registries, the U.S. Renal Data System (USRDS) and the European Society of Paediatric Nephrology (ESPN) Registry, have now provided us with evidence to guide us in this important decision-making process. The message ‘no benefit from early start of dialysis’ is the conclusion from all four studies. However, what are the limitations of these studies? Can GFR be assessed at CKD stages 4 and 5? What are the factors used to assess the benefit of early or late start? These issues are discussed in this review.


Timing of dialysis initiation GFR Renal replacement therapy End-stage kidney disease 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Watson AR, Gartland C, European Paediatric Peritoneal Dialysis Working Group (2001) Guidelines by an ad hoc European committee for elective chronic peritoneal dialysis in pediatric patients. Perit Dial Int 21(3):240–244Google Scholar
  2. 2.
    KDOQI clinical practice recommendations for 2006 updates: hemodialysis adequacy, peritoneal dialysis adequacy and vascular access (2006) Am J Kidney Dis 48(Suppl 1):S1–322. Availiable from: Accessed 01/07/2019
  3. 3.
    Nesrallah GE, Mustafa RA, Clark WF, Bass A, Barnieh L, Hemmelgarn BR, Klarenbach S, Quinn RR, Hiremath S, Ravani P, Sood MM, Moist LM (2014) Canadian Society of Nephrology 2014 clinical practice guideline for timing the initiation of chronic dialysis. CMAJ 186(2):112–117Google Scholar
  4. 4.
    Daugirdas JT, Depner TA, Inrig J, Mehrotra R, Rocco MV, Suri RS, Weiner DE, Greer N, Ishani A, MacDonald R, Olson C, Rutks I, Slinin Y, Wilt TJ, Rocco M, Kramer H, Choi MJ, Samaniego-Picota M, Scheel PJ, Willis K, Joseph J, Brereton L (2015) KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis 66(5):884–930Google Scholar
  5. 5.
    Gilbert J, Lovibond K, Mooney A, Dudley J, Guideline Committee (2018) Renal replacement therapy: summary of NICE guidance. BMJ 363:k4303Google Scholar
  6. 6.
    Chan CT, Blankestijn PJ, Dember LM, Gallieni M, Harris DCH, Lok CE, Mehrotra R, Stevens PE, Wang AY, Cheung M, Wheeler DC, Winkelmayer WC, Pollock CA, Conference Participants (2019) Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int Available from: Accessed 01/07/2019
  7. 7.
    Winnicki E, McCulloch CE, Mitsnefes MM, Furth SL, Warady BA, Ku E (2018) Use of the kidney failure risk equation to determine the risk of progression to end-stage renal disease in children with chronic kidney disease. JAMA Pediatr 172(2):174–180Google Scholar
  8. 8.
    Furth S, Pierce C, Hui W, White C, Wong C, Schaefer F, Wühl E, Abraham AG, Waraby BA (2018) Estimating time to ESRD in children with CKD. Am J Kidney Dis 71(6):783–792Google Scholar
  9. 9.
    Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637Google Scholar
  10. 10.
    Delanghe JR (2009) How to estimate GFR in children. Nephrol Dial Transplant 24(3):714–716Google Scholar
  11. 11.
    Pottel H (2017) Measuring and estimating glomerular filtration rate in children. Pediatr Nephrol 32(2):249–263Google Scholar
  12. 12.
    Rowe C, Sitch AJ, Barratt J, Brettell EA, Cockwell P, Dalton RN, Deeks JJ, Eaglestone G, Pellatt-Higgins T, Kaira PA, Khunti K, Loud FC, Morris FS, Ottridge RS, Stevens PE, Sharpe CC, Sutton AJ, Taal MW, Lamb EJ, eGFR-C study group (2019) Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease. Kidney Int.
  13. 13.
    Srivastava T, Althahabi R, Garg U (2009) Impact of standardization of creatinine methodology on the assessment of glomerular filtration rate in children. Pediatr Res 65(1):113Google Scholar
  14. 14.
    Mian AN, Schwartz GJ (2017) Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis 24(6):348–356Google Scholar
  15. 15.
    Delanghe JR, Speeckaert MM (2011) Creatinine determination according to Jaffe - what does it stand for? NDT Plus 4(2):83–86Google Scholar
  16. 16.
    Peake M, Whiting M (2006) Measurement of serum creatinine--current status and future goals. Clin Biochem Rev 27(4):173–184Google Scholar
  17. 17.
    Piéroni L, Delanaye P, Boutten A, Bargnoux AS, Rozet E, Delatour V, Carlier MC, Hanser AM, Cavalier E, Froissart M, Cristol JP, Société Française de Biologie Clinique (2011) A multicentric evaluation of IDMS-traceable creatinine enzymatic assays. Clin Chim Acta 412(23–24):2070–2075Google Scholar
  18. 18.
    Björk J, Nyman U, Berg U, Delanaye P, Dubourg L, Goffin K, Grubb A, Hansson M, Littmann K, Asling-Monemi K, Bökenkamp A, Pottel H (2019) Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children. Pediatr Nephrol 34(6):1087–1098Google Scholar
  19. 19.
    Whiting P, Birnie K, Sterne J, Jameson C, Skinner R, Phillips B, Cystatin C in CHildhood Cancer Collaboration Group (2018) Accuracy of cystatin C for the detection of abnormal renal function in children undergoing chemotherapy for malignancy: a systematic review using individual patient data. Support Care Cancer 26(5):1635–1644Google Scholar
  20. 20.
    Kar S, Paglialunga S, Islam R (2018) Cystatin C is a more reliable biomarker for determining eGFR to support drug development studies. J Clin Pharmacol 58(10):1239–1247Google Scholar
  21. 21.
    Preka E, Bonthuis M, Harambat J, Jager KJ, Groothoff JW, Baiko S, Bayazit AK, Boehm M, Cvetkovic M, Edvardsson VO, Fomina S, Heaf JG, Holtta T, Kis E, Kolvek G, Koster-Kamphuis L, Molchanova EA, Muňoz M, Neto G, Novljan G, Printza N, Sahpazova E, Sartz L, Sinha MD, Vidal E, Vondrak K, Vrillon I, Weber LT, Weitz M, Zagozdzon I, Stefanidis CJ, Bakkaloglu SA (2019) Association between timing of dialysis initiation and clinical outcomes in the paediatric population: An ESPN/ERA-EDTA Registry study. Nephrol Dial Transplant.
  22. 22.
    Jander A, Nowick M, Tkaczyk M, Roszkowska-Blaim M, Jarmoliński T, Marczak E, Pałuba E, Pietrzyk JA, Siteń G, Stankiewicz R, Szprynger K, Zajaczkowska M, Zachwieja J, Zoch-Zwierz W, Zwolińska D (2006) Does a late referral to a nephrologist constitute a problem in children starting renal replacement therapy in Poland? - a nationwide study. Nephrol Dial Transplant 21(4):957–961Google Scholar
  23. 23.
    Pruthi R, Casula A, Inward C, Roderick P, Sinha MD, British Association for Paediatric Nephrology (2016) Early requirement for RRT in children at presentation in the United Kingdom: association with transplantation and survival. Clin J Am Soc Nephrol 11(5):795–802Google Scholar
  24. 24.
    Lameire N, Van Biesen W (1999) The pattern of referral of patients with end-stage renal disease to the nephrologist--a European survey. Nephrol Dial Transplant 14(6):16–23Google Scholar
  25. 25.
    Roderick P, Jones C, Drey N, Blakeley S, Webster P, Goddard J, Garland S, Bourton L, Mason J, Tomson C (2002) Late referral for end-stage renal disease: a region-wide survey in the south west of England. Nephrol Dial Transplant 17(7):1252–1259Google Scholar
  26. 26.
    Huisman R (2004) The deadly risk of late referral. Nephrol Dial Transplant 19(9):2175–2180Google Scholar
  27. 27.
    Smart NA, Titus TT (2011) Outcomes of early versus late nephrology referral in chronic kidney disease: a systematic review. Am J Med 124(11):1073–1080Google Scholar
  28. 28.
    Levin A (2000) Consequences of late referral on patient outcomes. Nephrol Dial Transplant 15(Suppl 3):8–13Google Scholar
  29. 29.
    Okuda Y, Soohoo M, Tang Y, Obi Y, Laster M, Rhee CM, Streja E, Kalantar-Zadeh K (2019) Estimated GFR at dialysis initiation and mortality in children and adolescents. Am J Kidney Dis 73(6):797–805Google Scholar
  30. 30.
    Winnicki E, Johansen KL, Cabana MD, Waraby BA, McCulloch CE, Grimes B, Ku E (2019) Higher eGFR at dialysis initiation is not associated with a survival benefit in children. J Am Soc Nephrol.
  31. 31.
    Dart AB, Zappitelli M, Sood MM, Alexander RT, Arora S, Erickson RL, Kroeker K, Soo A, Manns BJ, Samuel SM (2017) Variation in estimated glomerular filtration rate at dialysis initiation in children. Pediatr Nephrol 32(2):331–340Google Scholar
  32. 32.
    Atkinson MA, Oberai PC, Neu AM, Fivush BA, Parekh RS (2010) Predictors and consequences of higher estimated glomerular filtration rate at dialysis initiation. Pediatr Nephrol 25(6):1153–1161Google Scholar
  33. 33.
    Harambat J, Bonthuis M, Groothoff JW, Schaefer F, Tizard EJ, Verrina E, van Stralen KJ, Jager KJ (2016) Lessons learned from the ESPN/ERA–EDTA Registry. Pediatr Nephrol 31(11):2055–2064Google Scholar
  34. 34.
    Rosansky SJ, Clark WF (2013) Has the yearly increase in the renal replacement therapy population ended? J Am Soc Nephrol 24(9):1367–1370Google Scholar
  35. 35.
    Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L (2012) United States Renal Data System 2011 Annual Data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Am J Kidney Dis 59(1 Suppl 1: A7):e1–e420Google Scholar
  36. 36.
    Hemodialysis Adequacy 2006 Work Group (2006) Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis 48(Suppl 1):S2–S90Google Scholar
  37. 37.
    Cooper BA, Aslani A, Ryan M, Ibels LS, Pollock C (2003) Nutritional state correlates with renal function at the start of dialysis. Perit Dial Int 23(3):291–295Google Scholar
  38. 38.
    Schaefer F, Benner L, Borzych-Dużałka D, Zaritsky J, Xu H, Rees L, Antonio ZL, Serdaroglu E, Hooman N, Patel H, Sever L, Vondrak K, Flynn J, Rébori A, Wong W, Hölttä T, Yildirim ZY, Ranchin B, Grenda R, Testa S, Drożdz D, Szabo AJ, Eid L, Basu B, Vitkevic R, Wong C, Pottoore SJ, Müller D, Dusunsel R, Celedon CG, Fila M, Sartz L, Sander A, Warady BA, International Pediatric Peritoneal Dialysis Network (IPPN) Registry (2019) Global variation of nutritional status in children undergoing chronic peritoneal dialysis: a longitudinal study of the International Pediatric Peritoneal Dialysis Network. Sci Rep 9(1):4886Google Scholar
  39. 39.
    Rees L (2017) Renal replacement therapies in neonates: issues and ethics. Semin Fetal Neonatal Med 22(2):104–108Google Scholar
  40. 40.
    Rees L (2019) Assessment of dialysis adequacy: beyond urea kinetic measurements. Pediatr Nephrol 34(1):61–69Google Scholar
  41. 41.
    Rees L, Schaefer F, Schmitt CP, Shroff R, Warady BA (2017) Chronic dialysis in children and adolescents: challenges and outcomes. Lancet Child Adolesc Health 1(1):68–77Google Scholar
  42. 42.
    Clementi MA, Zimmerman CT (2019) Psychosocial considerations and recommendations for care of pediatric patients on dialysis. Pediatr Nephrol.
  43. 43.
    Neul SK, Minard CG, Currier H, Goldstein SL (2013) Health-related quality of life functioning over a 2-year period in children with end-stage renal disease. Pediatr Nephrol 28(2):285–293Google Scholar
  44. 44.
    Lawryl KW, Brouhardl BH, Cunningham RJ (1994) Cognitive functioning and school performance in children with renal failure. Pediatr Nephrol 8(3):326–329Google Scholar
  45. 45.
    Cooper BA, Branley P, Bulfone L, Collins JF, Craig JC, Fraenkel MB, Harris A, Johnson DW, Kesselhut J, Li JJ, Luxton G, Pilmore A, Tiller DJ, Harri DC, Pollock CA, IDEAL Study (2010) A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med 363(7):609–619Google Scholar
  46. 46.
    Harris A, Cooper BA, Li JJ, Bulfone L, Branley P, Collins JF, Craig JC, Fraenkel MB, Johnson DW, Kesselhut J, Luxton G, Pilmore A, Rosevear M, Tiller DJ, Pollock CA (2011) Cost-effectiveness of initiating dialysis early: a randomized controlled trial. Am J Kidney Dis 57(5):707–715Google Scholar
  47. 47.
    Rosansky SJ, Eggers P, Jackson K, Glassock R, Clark WF (2011) Early start of hemodialysis may be harmful. Arch Intern Med 171(5):396–340Google Scholar
  48. 48.
    Crews DC, Scialla JJ, Liu J, Guo H, Bandeen-Roche K, Ephraim PL, Jaar BG, Sozio SM, Miskulin DC, Tangri N, Shafi T, Meyer KB, Wu AW, Powe NR, Boulware LE (2014) Predialysis health, dialysis timing, and outcomes among older United States adults. J Am Soc Nephrol 25(2):370–379Google Scholar
  49. 49.
    Lee J, An JN, Hwang JH, Kim YL, Kang SW, Yang CW, Kim NH, Oh YK, Lim CS, Kim YS, Lee JP (2014) Effect of dialysis initiation timing on clinical outcomes: a propensity-matched analysis of a prospective cohort study in Korea. PLoS One 9(8):e105532Google Scholar
  50. 50.
    Whalley GA, Marwick TH, Doughty RN, Cooper BA, Johnson DW, Pilmore A, Arris DC, Pollock CA, Collins JF, IDEAL Echo Substudy Investigators (2013) Effect of early initiation of dialysis on cardiac structure and function: results from the echo substudy of the IDEAL trial. Am J Kidney Dis 61(2):262–270Google Scholar
  51. 51.
    Mitsnefes M (2012) Cardiovascular disease in children and adolescents with chronic kidney disease. J Am Soc Nephrol 23(4):578–585Google Scholar
  52. 52.
    Tkaczyk M, Nowicki M, Bałasz-Chmielewska I, Boguszewska-Baçzkowska H, Drozdz D, Kołłataj B, Jarmoliński T, Jobs K, Kiliś-Pstrusińska K, Leszczyńska B, Makulska I, Runowski D, Stankiewicz R, Szczepańska M, Wierciński R, Grenda R, Kanik A, Pietrzyk JA, Roszkowska-Blaim M, Szprynger K, Zachwieja J, Zajaczkowska MM, Zoch-Zwierz W, Zwolińska D, Zurowska A (2006) Hypertension in dialysed children: the prevalence and therapeutic approach in Poland--a nationwide survey. Nephrol Dial Transplant 21(3):736–742Google Scholar
  53. 53.
    Bakkaloğlu SA, Kandur Y, Serdaroğlu E, Noyan A, Bayazıt AK, Sever L, Özlü SG, Özçelik G, Dursun İ, Alparslan C (2017) Effect of the timing of dialysis initiation on left ventricular hypertrophy and ınflammation in pediatric patients. Pediatr Nephrol 32(9):1595–1602Google Scholar
  54. 54.
    Gerson A, Hwang W, Fiorenza J, Barth K, Kaskel F, Weiss L, Zelikovsky N, Fivush B, Furth S (2004) Anemia and health-related quality of life in adolescents with chronic kidney disease. Am J Kidney Dis 44(6):1017–1023Google Scholar
  55. 55.
    Chavers BM, Solid CA, Daniels FX, Chen SC, Collins AJ, Frankenfield DL, Herzog CA (2009) Hypertension in pediatric long-term hemodialysis patients in the United States. Clin J Am Soc Nephrol 4(8):1363–1369Google Scholar
  56. 56.
    Rocco M, Yan G, Heyka R, Benz R, Cheung A, HEMO Study Group (2001) Risk factors for hypertension in chronic hemodialysis patients: baseline data from the HEMO study. Am J Nephrol 21(4):280–288Google Scholar
  57. 57.
    Harambat J, Ekulu P (2016) Inequalities in access to pediatric ESRD care: a global health challenge. Pediatr Nephrol 31(3):353–358Google Scholar
  58. 58.
    Rivara MB, Mehrotra R (2017) Timing of dialysis initiation: what has changed since IDEAL? Semin Nephrol 37(2):181–193Google Scholar
  59. 59.
    Ong SW, Jassal SV, Miller JA, Porter EC, Cafazzo JA, Seto E, Thorpe KE, Logan AG (2016) Integrating a smartphone–based self–management system into usual care of advanced CKD. Clin J Am Soc Nephrol 11(6):1054–1062Google Scholar

Copyright information

© IPNA 2019

Authors and Affiliations

  1. 1.Department of Paediatric NephrologyGreat Ormond Street Hospital for Children NHS foundation TrustLondonUK

Personalised recommendations