Pediatric Nephrology

, Volume 34, Issue 3, pp 465–474 | Cite as

A clinical predictive model of renal injury in children with congenital solitary functioning kidney

  • Isabel V. Poggiali
  • Ana Cristina Simões e Silva
  • Mariana A. Vasconcelos
  • Cristiane S. Dias
  • Izabella R. Gomes
  • Rafaela A. Carvalho
  • Maria Christina L. Oliveira
  • Sergio V. Pinheiro
  • Robert H. Mak
  • Eduardo A. OliveiraEmail author
Original Article



Solitary functioning kidney (SFK) is an important condition in the spectrum of congenital anomalies of the kidney and urinary tract. The aim of this study was to describe the risk factors for renal injury in a cohort of patients with congenital SFK.


In this retrospective cohort study, 162 patients with SFK were systematically followed up (median, 8.5 years). The primary endpoint was time until the occurrence of a composite event of renal injury, which includes proteinuria, hypertension, and chronic kidney disease (CKD). A predictive model was developed using Cox proportional hazards model and evaluated by c statistics.


Among 162 children with SFK included in the analysis, 132 (81.5%) presented multicystic dysplastic kidney, 20 (12.3%) renal hypodysplasia, and 10 (6.2%) unilateral renal agenesis. Of 162 patients included in the analysis, 10 (6.2%) presented persistent proteinuria, 11 (6.8%) had hypertension, 9 (5.6%) developed CKD stage ≥ 3, and 18 (11%) developed the composite outcome. After adjustment by the Cox model, three variables remained as independent predictors of the composite event: creatinine (HR, 3.93; P < 0.001), recurrent urinary tract infection (UTI) (HR, 5.05; P = 0.002), and contralateral renal length at admission (HR, 0.974; P = 0.002). The probability of the composite event at 10 years of age was estimated as 3%, 11%, and 56% for patients assigned to the low-risk, medium-risk, and high-risk groups, respectively (P < 0.001).


Our findings have shown an overall low risk of renal injury for most of infants with congenital SFK. Nevertheless, our prediction model enabled the identification of a subgroup of patients with an increased risk of renal injury over time.


Solitary kidney Chronic kidney disease Hypertension Proteinuria Urinary tract infection 


Funding information

R.H.M. is supported by NIH grants U01 DK-03012 and R24HD050837. E.A.O. is supported by CAPES grant 2746-15-8. This study was partially supported by CNPq (Brazilian National Research Council, Grant 481649/2013-1), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Grant PPM-00228-15), and the INCT-MM Grant (FAPEMIG: CBBAPQ-00075-09/CNPq 573646/2008-2).

Compliance with ethical standards

The Ethics Committee of the Federal University of Minas Gerais approved the study, and the parents or individuals responsible for the children gave written informed consent to participate.

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Loane M, Dolk H, Kelly A, Teljeur C, Greenlees R, Densem J (2011) Paper 4: EUROCAT statistical monitoring: identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res A Clin Mol Teratol 91(Suppl 1):S31–S43CrossRefGoogle Scholar
  2. 2.
    Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C (2005) Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet 48:131–144CrossRefGoogle Scholar
  3. 3.
    Westland R, Schreuder MF, van Goudoever JB, Sanna-Cherchi S, van Wijk JA (2014) Clinical implications of the solitary functioning kidney. Clin J Am Soc Nephrol 9:978–986CrossRefGoogle Scholar
  4. 4.
    Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, Innocenti ML, Somenzi D, Trivelli A, Caridi G, Izzi C, Scolari F, Mattioli G, Allegri L, Ghiggeri GM (2009) Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 76:528–533CrossRefGoogle Scholar
  5. 5.
    Westland R, Schreuder MF, Ket JC, van Wijk JA (2013) Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol Dial Transplant 28:1844–1855CrossRefGoogle Scholar
  6. 6.
    La Scola C, Ammenti A, Puccio G, Lega MV, De Mutiis C, Guiducci C, De Petris L, Perretta R, Venturoli V, Vergine G, Zucchini A, Montini G (2016) Congenital solitary kidney in children: size matters. J Urol 196:1250–1256CrossRefGoogle Scholar
  7. 7.
    Corbani V, Ghiggeri GM, Sanna-Cherchi S (2011) Congenital solitary functioning kidneys: which ones warrant follow-up into adult life? Nephrol Dial Transplant 26:1458–1460CrossRefGoogle Scholar
  8. 8.
    Hayes WN, Watson AR, Trent AMSG (2012) Unilateral multicystic dysplastic kidney: does initial size matter? Pediatr Nephrol 27:1335–1340CrossRefGoogle Scholar
  9. 9.
    Vu KH, Van Dyck M, Daniels H, Proesmans W (2008) Renal outcome of children with one functioning kidney from birth. A study of 99 patients and a review of the literature. Eur J Pediatr 167:885–890CrossRefGoogle Scholar
  10. 10.
    Avni EF, Thoua Y, Lalmand B, Didier F, Droulle P, Schulman CC (1986) Multicystic dysplastic kidney: evolving concepts. In utero diagnosis and post-natal follow-up by ultrasound. Ann Radiol 29:663–668PubMedGoogle Scholar
  11. 11.
    Avni EF, Thoua Y, Van Gansbeke D, Matos C, Didier F, Droulez P, Schulman CC (1987) Development of the hypodysplastic kidney: contribution of antenatal US diagnosis. Radiology 164:123–125CrossRefGoogle Scholar
  12. 12.
    Rabelo EA, Oliveira EA, Diniz JS, Silva JM, Filgueiras MT, Pezzuti IL, Tatsuo ES (2004) Natural history of multicystic kidney conservatively managed: a prospective study. Pediatr Nephrol 19:1102–1107CrossRefGoogle Scholar
  13. 13.
    Rabelo EA, Oliveira EA, Silva JM, Bouzada MC, Sousa BC, Almeida MN, Tatsuo ES (2005) Conservative management of multicystic dysplastic kidney: clinical course and ultrasound outcome. J Pediatr 81:400–404CrossRefGoogle Scholar
  14. 14.
    Rabelo EA, Oliveira EA, Silva GS, Pezzuti IL, Tatsuo ES (2005) Predictive factors of ultrasonographic involution of prenatally detected multicystic dysplastic kidney. BJU Int 95:868–871CrossRefGoogle Scholar
  15. 15.
    Siqueira Rabelo EA, Oliveira EA, Silva JM, Oliveira DS, Colosimo EA (2006) Ultrasound progression of prenatally detected multicystic dysplastic kidney. Urology 68:1098–1102CrossRefGoogle Scholar
  16. 16.
    Dinkel E, Ertel M, Dittrich M, Peters H, Berres M, Schulte-Wissermann H (1985) Kidney size in childhood. Sonographical growth charts for kidney length and volume. Pediatr Radiol 15:38–43CrossRefGoogle Scholar
  17. 17.
    Han BK, Babcock DSV (1985) Sonographic measurements and appearance of normal kidneys in children. Am J Roentgenol 145:611–616CrossRefGoogle Scholar
  18. 18.
    Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin N Am 34:571–590CrossRefGoogle Scholar
  19. 19.
    Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637CrossRefGoogle Scholar
  20. 20.
    Anonymous (1996) Update on the 1987 task force report on high blood pressure in children and adolescents: a working group report from the National High Blood Pressure Education Program. Pediatrics 98:649–657Google Scholar
  21. 21.
    Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD, Lau J, Eknoyan G (2003) National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139:137–147CrossRefGoogle Scholar
  22. 22.
    Anonymous (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576Google Scholar
  23. 23.
    Chen JJ, Zhi J, Mao W, Steinhardt GF (2006) MrNomogram: a web-based multivariable pediatric renal nomogram. J Pediatr Urol 2:436–438CrossRefGoogle Scholar
  24. 24.
    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35CrossRefGoogle Scholar
  25. 25.
    Jager KJ, van Dijk PC, Zoccali C, Dekker FW (2008) The analysis of survival data: the Kaplan-Meier method. Kidney Int 74:560–565CrossRefGoogle Scholar
  26. 26.
    Ravani P, Parfrey P, Gadag V, Malberti F, Barrett B (2007) Clinical research of kidney diseases III: principles of regression and modelling. Nephrol Dial Transplant 22:3422–3430CrossRefGoogle Scholar
  27. 27.
    van Dijk PC, Jager KJ, Zwinderman AH, Zoccali C, Dekker FW (2008) The analysis of survival data in nephrology: basic concepts and methods of Cox regression. Kidney Int 74:705–709CrossRefGoogle Scholar
  28. 28.
    Rubin DB, Schenker N (1991) Multiple imputation in health-care databases: an overview and some applications. Stat Med 10:585–598CrossRefGoogle Scholar
  29. 29.
    Sullivan LM, Massaro JM, D'Agostino RB Sr (2004) Presentation of multivariate data for clinical use: the Framingham study risk score functions. Stat Med 23:1631–1660CrossRefGoogle Scholar
  30. 30.
    Moons KG, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, Woodward M (2012) Risk prediction models: II. External validation, model updating, and impact assessment. Heart 98:691–698CrossRefGoogle Scholar
  31. 31.
    Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387CrossRefGoogle Scholar
  32. 32.
    Cook NR, Buring JE, Ridker PM (2006) The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med 145:21–29CrossRefGoogle Scholar
  33. 33.
    Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW (2010) Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21:128–138CrossRefGoogle Scholar
  34. 34.
    Moons KG, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, Grobbee DE (2012) Risk prediction models: I. development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 98:683–690CrossRefGoogle Scholar
  35. 35.
    Marzuillo P, Polito C (2018) Congenital solitary kidney in childhood: not so bad. Pediatr Nephrol 33:723–724CrossRefGoogle Scholar
  36. 36.
    Schreuder MF (2018) Life with one kidney: response to comments by Marzuillo and Polito. Pediatr Nephrol 33:725–726CrossRefGoogle Scholar
  37. 37.
    Schreuder MF (2018) Life with one kidney. Pediatr Nephrol 33:595–604CrossRefGoogle Scholar
  38. 38.
    Abou Jaoude P, Dubourg L, Bacchetta J, Berthiller J, Ranchin B, Cochat P (2011) Congenital versus acquired solitary kidney: is the difference relevant? Nephrol Dial Transplant 26:2188–2194CrossRefGoogle Scholar
  39. 39.
    Schreuder MF, Langemeijer ME, Bokenkamp A, Delemarre-Van de Waal HA, Van Wijk JA (2008) Hypertension and microalbuminuria in children with congenital solitary kidneys. J Paediatr Child Health 44:363–368CrossRefGoogle Scholar
  40. 40.
    Seeman T, Patzer L, John U, Dusek J, Vondrak K, Janda J, Misselwitz J (2006) Blood pressure, renal function, and proteinuria in children with unilateral renal agenesis. Kidney Blood Press Res 29:210–215CrossRefGoogle Scholar
  41. 41.
    Siomou E, Giapros V, Papadopoulou F, Pavlou M, Fotopoulos A, Siamopoulou A (2014) Growth and function in childhood of a normal solitary kidney from birth or from early infancy. Pediatr Nephrol 29:249–256CrossRefGoogle Scholar
  42. 42.
    Westland R, Schreuder MF, van der Lof DF, Vermeulen A, Dekker-van der Meer IM, Bokenkamp A, van Wijk JA (2014) Ambulatory blood pressure monitoring is recommended in the clinical management of children with a solitary functioning kidney. Pediatr Nephrol 29:2205–2211CrossRefGoogle Scholar
  43. 43.
    Marzuillo P, Guarino S, Grandone A, Di Somma A, Della Vecchia N, Esposito T, Macchini G, Marotta R, Apicella A, Diplomatico M, Rambaldi PF, Perrone L, Miraglia Del Giudice E, La Manna A, Polito C (2017) Outcomes of a cohort of prenatally diagnosed and early enrolled patients with congenital solitary functioning kidney. J Urol 198:1153–1158CrossRefGoogle Scholar
  44. 44.
    Westland R, Kurvers RA, van Wijk JA, Schreuder MF (2013) Risk factors for renal injury in children with a solitary functioning kidney. Pediatrics 131:e478–e485CrossRefGoogle Scholar
  45. 45.
    Westland R, Schreuder MF, Bokenkamp A, Spreeuwenberg MD, van Wijk JA (2011) Renal injury in children with a solitary functioning kidney--the KIMONO study. Nephrol Dial Transplant 26:1533–1541CrossRefGoogle Scholar
  46. 46.
    Cerqueira DC, Soares CM, Silva VR, Magalhaes JO, Barcelos IP, Duarte MG, Pinheiro SV, Colosimo EA, Simoes e Silva AC, Oliveira EA (2014) A predictive model of progression of CKD to ESRD in a predialysis pediatric interdisciplinary program. Clin J Am Soc Nephrol 9:728–735CrossRefGoogle Scholar
  47. 47.
    Ishikura K, Uemura O, Hamasaki Y, Ito S, Wada N, Hattori M, Ohashi Y, Tanaka R, Nakanishi K, Kaneko T, Honda M, Pediatric CKDSGiJ, Committee of Measures for Pediatric CKDoJSoPN (2014) Progression to end-stage kidney disease in Japanese children with chronic kidney disease: results of a nationwide prospective cohort study. Nephrol Dial Transplant 29:878–884CrossRefGoogle Scholar
  48. 48.
    Larkins NG, Craig JC, Teixeira-Pinto A (2018) A guide to missing data for the pediatric nephrologist. Pediatr Nephrol.
  49. 49.
    Toll DB, Janssen KJ, Vergouwe Y, Moons KG (2008) Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol 61:1085–1094CrossRefGoogle Scholar
  50. 50.
    Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781CrossRefGoogle Scholar

Copyright information

© IPNA 2018

Authors and Affiliations

  • Isabel V. Poggiali
    • 1
  • Ana Cristina Simões e Silva
    • 1
  • Mariana A. Vasconcelos
    • 1
  • Cristiane S. Dias
    • 1
  • Izabella R. Gomes
    • 1
  • Rafaela A. Carvalho
    • 1
  • Maria Christina L. Oliveira
    • 1
  • Sergio V. Pinheiro
    • 1
  • Robert H. Mak
    • 2
  • Eduardo A. Oliveira
    • 1
    • 2
    Email author
  1. 1.Pediatric Nephrourology Division, Department of Pediatrics, National Institute of Science and Technology (INCT) of Molecular Medicine, School of MedicineFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Division of Pediatric Nephrology, Rady Children’s Hospital San DiegoUniversity of California, San DiegoLa JollaUSA

Personalised recommendations