Kidney as modulator and target of “good/bad” HDL

  • Jianyong Zhong
  • Haichun Yang
  • Valentina KonEmail author


The strong inverse relationship between low levels of high-density lipoproteins (HDLs) and atherosclerotic cardiovascular disease (CVD) led to the designation of HDL as the “good” cholesterol. The atheroprotection is thought to reflect HDL’s capacity to efflux cholesterol from macrophages, followed by interaction with other lipoproteins in the plasma, processing by the liver and excretion into bile. However, pharmacologic increases in HDL-C levels have not led to expected clinical benefits, giving rise to the concept of dysfunctional HDL, in which increases in serum HDL-C are not beneficial due to lost or altered HDL functions and transition to “bad” HDL. It is now understood that the cholesterol in HDL, measured by HDL-C, is neither a marker nor the mediator of HDL function, including cholesterol efflux capacity. It is also understood that besides cholesterol efflux, HDL functionality encompasses many other potentially beneficial functions, including antioxidant, anti-inflammatory, antithrombotic, anti-apoptotic, and vascular protective effects that may be critical protective pathways for various cells, including those in the kidney parenchyma. This review highlights advances in our understanding of the role kidneys play in HDL metabolism, including the effects on levels, composition, and functionality of HDL particles, particularly the main HDL protein, apolipoprotein AI (apoAI). We suggest that normal apoAI/HDL in the glomerular filtrate provides beneficial effects, including lymphangiogenesis, that promote resorption of renal interstitial fluid and biological particles. In contrast, dysfunctional apoAI/HDL activates detrimental pathways in tubular epithelial cells and lymphatics that lead to interstitial accumulation of fluid and harmful particles that promote progressive kidney damage.


HDL ApoA-I Kidney Chronic kidney disease Cardiovascular disease 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302:1993–2000. CrossRefPubMedGoogle Scholar
  2. 2.
    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B (2007) Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 357:2109–2122. CrossRefPubMedGoogle Scholar
  3. 3.
    Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W (2011) Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 365:2255–2267. CrossRefPubMedGoogle Scholar
  4. 4.
    Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl H, Nicholls SJ, Shah PK, Tardif JC, Wright RS (2012) Effects of Dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. CrossRefGoogle Scholar
  5. 5.
    Keene D, Price C, Shun-Shin MJ, Francis DP (2014) Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ 349:g4379. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jansen H, Samani NJ, Schunkert H (2014) Mendelian randomization studies in coronary artery disease. Eur Heart J 35:1917–1924. CrossRefPubMedGoogle Scholar
  7. 7.
    Annema W, von Eckardstein A (2013) High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ J 77:2432–2448CrossRefGoogle Scholar
  8. 8.
    Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364:127–135. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neeland IJ, Yuhanna IS, Rader DR, de Lemos JA, Shaul PW (2014) HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 371:2383–2393. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, Lukmanova D, Mucksavage ML, Luben R, Billheimer J, Kastelein JJ, Boekholdt SM, Khaw KT, Wareham N, Rader DJ (2015) Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol 3:507–513. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2017) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14:70. CrossRefPubMedGoogle Scholar
  12. 12.
    Vaziri ND (2016) HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat Rev Nephrol 12:37–47. CrossRefPubMedGoogle Scholar
  13. 13.
    Kronenberg F (2018) HDL in CKD-the devil is in the detail. J Am Soc Nephrol 29:1356–1371. CrossRefPubMedGoogle Scholar
  14. 14.
    Moradi H, Streja E, Kashyap ML, Vaziri ND, Fonarow GC, Kalantar-Zadeh K (2014) Elevated high-density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. Nephrol Dial Transplant 29:1554–1562. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lamprea-Montealegre JA, Sharrett AR, Matsushita K, Selvin E, Szklo M, Astor BC (2014) Chronic kidney disease, lipids and apolipoproteins, and coronary heart disease: the ARIC study. Atherosclerosis 234:42–46. CrossRefPubMedGoogle Scholar
  16. 16.
    Rahman M, Yang W, Akkina S, Alper A, Anderson AH, Appel LJ, He J, Raj DS, Schelling J, Strauss L, Teal V, Rader DJ, CRIC Study Investigators (2014) Relation of serum lipids and lipoproteins with progression of CKD: the CRIC study. Clin J Am Soc Nephrol 9:1190–1198. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bae JC, Han JM, Kwon S, Jee JH, Yu TY, Lee MK, Kim JH (2016) LDL-C/apoB and HDL-C/apoA-1 ratios predict incident chronic kidney disease in a large apparently healthy cohort. Atherosclerosis 251:170–176. CrossRefPubMedGoogle Scholar
  18. 18.
    Bowe B, Xie Y, Xian H, Balasubramanian S, Al-Aly Z (2016) Low levels of high-density lipoprotein cholesterol increase the risk of incident kidney disease and its progression. Kidney Int 89:886–896. CrossRefPubMedGoogle Scholar
  19. 19.
    Zewinger S, Speer T, Kleber ME, Scharnagl H, Woitas R, Lepper PM, Pfahler K, Seiler S, Heine GH, Marz W, Silbernagel G, Fliser D (2014) HDL cholesterol is not associated with lower mortality in patients with kidney dysfunction. J Am Soc Nephrol 25:1073–1082. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Silbernagel G, Genser B, Drechsler C, Scharnagl H, Grammer TB, Stojakovic T, Krane V, Ritz E, Wanner C, Marz W (2014) HDL cholesterol, apolipoproteins, and cardiovascular risk in hemodialysis patients. J Am Soc Nephrol 26:484–492. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Holzer M, Birner-Gruenberger R, Stojakovic T, El-Gamal D, Binder V, Wadsack C, Heinemann A, Marsche G (2011) Uremia alters HDL composition and function. J Am Soc Nephrol 22:1631–1641. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yamamoto S, Yancey PG, Ikizler TA, Jerome WG, Kaseda R, Cox B, Bian A, Shintani A, Fogo AB, Linton MF, Fazio S, Kon V (2012) Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol 60:2372–2379. CrossRefPubMedGoogle Scholar
  23. 23.
    Kaseda R, Tsuchida Y, Yang HC, Yancey PG, Zhong J, Tao H, Bian A, Fogo AB, Linton MRF, Fazio S, Ikizler TA, Kon V (2018) Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism. BMC Nephrol 19:17. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rogacev KS, Zawada AM, Emrich I, Seiler S, Bohm M, Fliser D, Woollard KJ, Heine GH (2014) Lower Apo A-I and lower HDL-C levels are associated with higher intermediate CD14++CD16+ monocyte counts that predict cardiovascular events in chronic kidney disease. Arterioscler Thromb Vasc Biol 34:2120–2127. CrossRefPubMedGoogle Scholar
  25. 25.
    Ganda A, Yvan-Charvet L, Zhang Y, Lai EJ, Regunathan-Shenk R, Hussain FN, Avasare R, Chakraborty B, Febus AJ, Vernocchi L, Lantigua R, Wang Y, Shi X, Hsieh J, Murphy AJ, Wang N, Bijl N, Gordon KM, de Miguel MH, Singer JR, Hogan J, Cremers S, Magnusson M, Melander O, Gerszten RE, Tall AR (2017) Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. J Mol Cell Cardiol 112:114–122. CrossRefPubMedGoogle Scholar
  26. 26.
    Shroff R, Speer T, Colin S, Charakida M, Zewinger S, Staels B, Chinetti-Gbaguidi G, Hettrich I, Rohrer L, O'Neill F, McLoughlin E, Long D, Shanahan CM, Landmesser U, Fliser D, Deanfield JE (2014) HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol 25:2658–2668. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kopecky C, Haidinger M, Birner-Grunberger R, Darnhofer B, Kaltenecker CC, Marsche G, Holzer M, Weichhart T, Antlanger M, Kovarik JJ, Werzowa J, Hecking M, Saemann MD (2015) Restoration of renal function does not correct impairment of uremic HDL properties. J Am Soc Nephrol 26:565–575. CrossRefPubMedGoogle Scholar
  28. 28.
    Kaseda R, Jabs K, Hunley TE, Jones D, Bian A, Allen RM, Vickers KC, Yancey PG, Linton MF, Fazio S, Kon V (2015) Dysfunctional high-density lipoproteins in children with chronic kidney disease. Metabolism 64:263–273. CrossRefPubMedGoogle Scholar
  29. 29.
    Speer T, Rohrer L, Blyszczuk P, Shroff R, Kuschnerus K, Krankel N, Kania G, Zewinger S, Akhmedov A, Shi Y, Martin T, Perisa D, Winnik S, Muller MF, Sester U, Wernicke G, Jung A, Gutteck U, Eriksson U, Geisel J, Deanfield J, von Eckardstein A, Luscher TF, Fliser D, Bahlmann FH, Landmesser U (2013) Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38:754–768. CrossRefPubMedGoogle Scholar
  30. 30.
    Meier SM, Wultsch A, Hollaus M, Ammann M, Pemberger E, Liebscher F, Lambers B, Fruhwurth S, Stojakovic T, Scharnagl H, Schmidt A, Springer A, Becker J, Aufricht C, Handisurya A, Kapeller S, Rohrl C, Stangl H, Strobl W (2015) Effect of chronic kidney disease on macrophage cholesterol efflux. Life Sci 136:1–6. CrossRefPubMedGoogle Scholar
  31. 31.
    Li XM, Tang WH, Mosior MK, Huang Y, Wu Y, Matter W, Gao V, Schmitt D, Didonato JA, Fisher EA, Smith JD, Hazen SL (2013) Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler Thromb Vasc Biol 33:1696–1705. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chitalia VC, Murikipudi S, Indolfi L, Rabadi L, Valdez R, Franses JW, Edelman ER (2011) Matrix-embedded endothelial cells are protected from the uremic milieu. Nephrol Dial Transplant 26:3858–3865. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Holzer M, Schilcher G, Curcic S, Trieb M, Ljubojevic S, Stojakovic T, Scharnagl H, Kopecky CM, Rosenkranz AR, Heinemann A, Marsche G (2015) Dialysis modalities and HDL composition and function. J Am Soc Nephrol 26:2267–2276. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kaseda R, Tsuchida Y, Gamboa JL, Zhong J, Zhang L, Yang H, Dikalova A, Bian A, Davies S, Fogo AF, Linton MF, Brown NJ, Ikizler TA, Kon V (2018) Angiotensin receptor blocker vs ACE inhibitor effects on HDL functionality in patients on maintenance hemodialysis. Nutr Metab Cardiovasc Dis 28:582–591. CrossRefPubMedGoogle Scholar
  35. 35.
    Hung AM TY, Nowak K, Sarkar S, Chonchol M, Salas N, Dikalova A, Huang J, Linton MF, Ikizler TA, Kon V (2017) IL-1 inhibition improves and HDL functionality in patients with stages 3 to 5 chronic kidney disease. ASN kidney week 2017;11/02/17 (
  36. 36.
    Kopecky C, Ebtehaj S, Genser B, Drechsler C, Krane V, Antlanger M, Kovarik JJ, Kaltenecker CC, Parvizi M, Wanner C, Weichhart T, Saemann MD, Tietge UJ (2017) HDL cholesterol efflux does not predict cardiovascular risk in hemodialysis patients. J Am Soc Nephrol 28:769–775. CrossRefPubMedGoogle Scholar
  37. 37.
    Bauer L, Kern S, Rogacev KS, Emrich IE, Zawada A, Fliser D, Heinemann A, Heine GH, Marsche G (2017) HDL cholesterol efflux capacity and cardiovascular events in patients with chronic kidney disease. J Am Coll Cardiol 69:246–247. CrossRefPubMedGoogle Scholar
  38. 38.
    Untersteller K, Meissl S, Trieb M, Emrich IE, Zawada AM, Holzer M, Knuplez E, Fliser D, Heine GH, Marsche G (2018) HDL functionality and cardiovascular outcome among nondialysis chronic kidney disease patients. J Lipid Res 59:1256–1265. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Honda H, Ueda M, Kojima S, Mashiba S, Michihata T, Takahashi K, Shishido K, Akizawa T (2012) Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis 220:493–501. CrossRefPubMedGoogle Scholar
  40. 40.
    Weichhart T, Kopecky C, Kubicek M, Haidinger M, Doller D, Katholnig K, Suarna C, Eller P, Tolle M, Gerner C, Zlabinger GJ, van der Giet M, Horl WH, Stocker R, Saemann MD (2012) Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol 23:934–947. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mange A, Goux A, Badiou S, Patrier L, Canaud B, Maudelonde T, Cristol JP, Solassol J (2012) HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach. PLoS One 7:e34107. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tolle M, Huang T, Schuchardt M, Jankowski V, Prufer N, Jankowski J, Tietge UJ, Zidek W, van der Giet M (2012) High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid a. Cardiovasc Res 94:154–162. CrossRefPubMedGoogle Scholar
  43. 43.
    Rubinow KB, Henderson CM, Robinson-Cohen C, Himmelfarb J, de Boer IH, Vaisar T, Kestenbaum B, Hoofnagle AN (2017) Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int 92:1526–1535. CrossRefPubMedGoogle Scholar
  44. 44.
    Shao B, Tang C, Heinecke JW, Oram JF (2010) Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J Lipid Res 51:1849–1858. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shao B, Heinecke JW (2011) Impact of HDL oxidation by the myeloperoxidase system on sterol efflux by the ABCA1 pathway. J Proteome 74:2289–2299 S1874-3919(11)00143-6CrossRefGoogle Scholar
  46. 46.
    Kraus LM, Kraus AP Jr (2001) Carbamoylation of amino acids and proteins in uremia. Kidney Int Suppl 78:S102–S107. CrossRefPubMedGoogle Scholar
  47. 47.
    Koeth RA, Kalantar-Zadeh K, Wang Z, Fu X, Tang WH, Hazen SL (2013) Protein carbamylation predicts mortality in ESRD. J Am Soc Nephrol 24:853–861. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Montuschi P, Barnes PJ, Roberts LJ II (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18:1791–1800. CrossRefPubMedGoogle Scholar
  49. 49.
    Shao B (2012) Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim Biophys Acta 1821:490–501. CrossRefPubMedGoogle Scholar
  50. 50.
    Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, Shyr Y, Himmelfarb J (2002) Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 58:190–197CrossRefGoogle Scholar
  51. 51.
    May-Zhang LS, Yermalitsky V, Huang J, Pleasent T, Borja MS, Oda MN, Jerome WG, Yancey PG, Linton MF, Davies SS (2018) Modification by isolevuglandins, highly reactive gamma-ketoaldehydes, deleteriously alters HDL structure and function. J Biol Chem 293:9176–9187. CrossRefPubMedGoogle Scholar
  52. 52.
    Woollett LA, Spady DK (1997) Kinetic parameters for high density lipoprotein apoprotein AI and cholesteryl ester transport in the hamster. J Clin Invest 99:1704–1713. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kronenberg F, Kuen E, Ritz E, Konig P, Kraatz G, Lhotta K, Mann JF, Muller GA, Neyer U, Riegel W, Riegler P, Schwenger V, von Eckardstein A (2002) Apolipoprotein A-IV serum concentrations are elevated in patients with mild and moderate renal failure. J Am Soc Nephrol 13:461–469PubMedGoogle Scholar
  54. 54.
    Mack S, Coassin S, Vaucher J, Kronenberg F, Lamina C, ApoA-IV-GWAS Consortium (2017) Evaluating the causal relation of ApoA-IV with disease-related traits—a bidirectional two-sample Mendelian randomization study. Sci Rep 7:8734. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Calabresi L, Simonelli S, Conca P, Busnach G, Cabibbe M, Gesualdo L, Gigante M, Penco S, Veglia F, Franceschini G (2015) Acquired lecithin:cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med 277:552–561. CrossRefPubMedGoogle Scholar
  56. 56.
    Lingenhel A, Lhotta K, Neyer U, Heid IM, Rantner B, Kronenberg MF, Konig P, von Eckardstein A, Schober M, Dieplinger H, Kronenberg F (2006) Role of the kidney in the metabolism of apolipoprotein A-IV: influence of the type of proteinuria. J Lipid Res 47:2071–2079. CrossRefPubMedGoogle Scholar
  57. 57.
    Stangl S, Kollerits B, Lamina C, Meisinger C, Huth C, Stockl A, Dahnhardt D, Boger CA, Kramer BK, Peters A, Kronenberg F (2015) Association between apolipoprotein A-IV concentrations and chronic kidney disease in two large population-based cohorts: results from the KORA studies. J Intern Med 278:410–423. CrossRefPubMedGoogle Scholar
  58. 58.
    Soto-Miranda E, Carreon-Torres E, Lorenzo K, Bazan-Salinas B, Garcia-Sanchez C, Franco M, Posadas-Romero C, Fragoso JM, Lopez-Olmos V, Madero M, Rodriguez-Perez JM, Vargas-Alarcon G, Perez-Mendez O (2012) Shift of high-density lipoprotein size distribution toward large particles in patients with proteinuria. Clin Chim Acta 414:241–245. CrossRefPubMedGoogle Scholar
  59. 59.
    Aseem O, Smith BT, Cooley MA, Wilkerson BA, Argraves KM, Remaley AT, Argraves WS (2014) Cubilin maintains blood levels of HDL and albumin. J Am Soc Nephrol 25:1028–1036. CrossRefPubMedGoogle Scholar
  60. 60.
    Kollerits B, Krane V, Drechsler C, Lamina C, Marz W, Ritz E, Wanner C, Kronenberg F, German Diabetes and Dialysis Study Investigators (2012) Apolipoprotein A-IV concentrations and clinical outcomes in haemodialysis patients with type 2 diabetes mellitus—a post hoc analysis of the 4D study. J Intern Med 272:592–600. CrossRefPubMedGoogle Scholar
  61. 61.
    Lamina C, Friedel S, Coassin S, Rueedi R, Yousri NA, Seppala I, Gieger C, Schonherr S, Forer L, Erhart G, Kollerits B, Marques-Vidal P, Ried J, Waeber G, Bergmann S, Dahnhardt D, Stockl A, Kiechl S, Raitakari OT, Kahonen M, Willeit J, Kedenko L, Paulweber B, Peters A, Meitinger T, Strauch K, Group KS, Lehtimaki T, Hunt SC, Vollenweider P, Kronenberg F (2016) A genome-wide association meta-analysis on apolipoprotein A-IV concentrations. Hum Mol Genet 25:3635–3646. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Peters KE, Davis WA, Ito J, Winfield K, Stoll T, Bringans SD, Lipscombe RJ, Davis TME (2017) Identification of novel circulating biomarkers predicting rapid decline in renal function in type 2 diabetes: the Fremantle diabetes study phase II. Diabetes Care 40:1548–1555. CrossRefPubMedGoogle Scholar
  63. 63.
    Florens N, Calzada C, Lyasko E, Juillard L, Soulage CO (2016) Modified lipids and lipoproteins in chronic kidney disease: a new class of uremic toxins. Toxins (Basel) 8(12):376–403. CrossRefGoogle Scholar
  64. 64.
    Kones R (2013) Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes. Vasc Health Risk Manag 9:617–670. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Smith LE, Smith DK, Blume JD, Linton MF, Billings FT 4th (2017) High-density lipoprotein cholesterol concentration and acute kidney injury after cardiac surgery. J Am Heart Assoc 6(12).
  66. 66.
    Palmer SC, Navaneethan SD, Craig JC, Johnson DW, Perkovic V, Hegbrant J, Strippoli GF (2014) HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev 5:CD007784. CrossRefGoogle Scholar
  67. 67.
    Baragetti A, Norata GD, Sarcina C, Rastelli F, Grigore L, Garlaschelli K, Uboldi P, Baragetti I, Pozzi C, Catapano AL (2013) High density lipoprotein cholesterol levels are an independent predictor of the progression of chronic kidney disease. J Intern Med 274:252–262. CrossRefPubMedGoogle Scholar
  68. 68.
    REVEAL Collaborative Group, Bowman L, Chen F, Sammons E, Hopewell JC, Wallendszus K, Stevens W, Valdes-Marquez E, Wiviott S, Cannon CP, Braunwald E, Collins R, Landray MJ (2017) Randomized evaluation of the effects of Anacetrapib through lipid-modification (REVEAL)—a large-scale, randomized, placebo-controlled trial of the clinical effects of anacetrapib among people with established vascular disease: trial design, recruitment, and baseline characteristics. Am Heart J 187:182–190. CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Russo GT, De Cosmo S, Viazzi F, Pacilli A, Ceriello A, Genovese S, Guida P, Giorda C, Cucinotta D, Pontremoli R, Fioretto P (2016) Plasma triglycerides and HDL-C levels predict the development of diabetic kidney disease in subjects with type 2 diabetes: the AMD annals initiative. Diabetes Care 39:2278–2287. CrossRefGoogle Scholar
  70. 70.
    Russo GT, Giandalia A, Romeo EL, Muscianisi M, Ruffo MC, Alibrandi A, Bitto A, Forte F, Grillone A, Asztalos B, Cucinotta D (2017) HDL subclasses and the common CETP TaqIB variant predict the incidence of microangiopatic complications in type 2 diabetic women: a 9years follow-up study. Diabetes Res Clin Pract 132:108–117. CrossRefPubMedGoogle Scholar
  71. 71.
    Coassin S, Friedel S, Kottgen A, Lamina C, Kronenberg F (2016) Is high-density lipoprotein cholesterol causally related to kidney function? Evidence from genetic epidemiological studies. Arterioscler Thromb Vasc Biol 36:2252–2258. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Haynes R, Staplin N, Emberson J, Herrington WG, Tomson C, Agodoa L, Tesar V, Levin A, Lewis D, Reith C, Baigent C, Landray MJ, SHARP Collaborative Group (2014) Evaluating the contribution of the cause of kidney disease to prognosis in CKD: results from the Study of Heart and Renal Protection (SHARP). Am J Kidney Dis 64:40–48. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Tsun JG, Yung S, Chau MK, Shiu SW, Chan TM, Tan KC (2014) Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One 9:e105787. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Merscher-Gomez S, Guzman J, Pedigo CE, Lehto M, Aguillon-Prada R, Mendez A, Lassenius MI, Forsblom C, Yoo T, Villarreal R, Maiguel D, Johnson K, Goldberg R, Nair V, Randolph A, Kretzler M, Nelson RG, Burke GW 3rd, Groop PH, Fornoni A, FinnDiane Study Group (2013) Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62:3817–3827. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gao X, Wu J, Qian Y, Fu L, Wu G, Xu C, Mei C (2014) Oxidized high-density lipoprotein impairs the function of human renal proximal tubule epithelial cells through CD36. Int J Mol Med 34:564–572. CrossRefPubMedGoogle Scholar
  76. 76.
    Baranova IN, Souza ACP, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Remaley AT, Patterson AP, Yuen PST, Star RA, Eggerman TL (2017) Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo. PLoS One 12:e0175824. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Thiemermann C, Patel NS, Kvale EO, Cockerill GW, Brown PA, Stewart KN, Cuzzocrea S, Britti D, Mota-Filipe H, Chatterjee PK (2003) High density lipoprotein (HDL) reduces renal ischemia/reperfusion injury. J Am Soc Nephrol 14:1833–1843CrossRefGoogle Scholar
  78. 78.
    Milasan A, Jean G, Dallaire F, Tardif JC, Merhi Y, Sorci-Thomas M, Martel C (2017) Apolipoprotein A-I modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice. J Am Heart Assoc 6(9):e006892.
  79. 79.
    Moreira RS, Irigoyen M, Sanches TR, Volpini RA, Camara NO, Malheiros DM, Shimizu MH, Seguro AC, Andrade L (2014) Apolipoprotein A-I mimetic peptide 4F attenuates kidney injury, heart injury, and endothelial dysfunction in sepsis. Am J Physiol Regul Integr Comp Physiol 307:R514–R524. CrossRefPubMedGoogle Scholar
  80. 80.
    Vaziri ND, Kim HJ, Moradi H, Farmand F, Navab K, Navab M, Hama S, Fogelman AM, Quiroz Y, Rodriguez-Iturbe B (2010) Amelioration of nephropathy with apoA-1 mimetic peptide in apoE-deficient mice. Nephrol Dial Transplant 25:3525–3534. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© IPNA 2018

Authors and Affiliations

  1. 1.Departments of PediatricsVanderbilt University Medical CenterNashvilleUSA
  2. 2.Departments of Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations