Advertisement

An update on LDL apheresis for nephrotic syndrome

  • Rupesh Raina
  • Vinod Krishnappa
Review
  • 35 Downloads

Abstract

Low-density lipoprotein (LDL) apheresis has been used increasingly in clinical practice for the treatment of renal diseases with nephrotic syndrome (NS), specifically focal segmental glomerulosclerosis (FSGS). Persistent hyperlipidemia for prolonged periods is nephrotoxic and leads to chronic progressive glomerular and tubulointerstitial injury. Effective management of hyperlipidemia with HMG-CoA reductase inhibitors or LDL apheresis in drug-resistant NS patients may prevent the progression of renal disease and, in some patients, resolution of NS symptoms. Available literature reveals beneficial effects of LDL apheresis for NS refractory to drug therapy. Here we update on the current understanding of lipid nephrotoxicity and application of LDL apheresis to prevent progression of renal diseases.

Keywords

Low-density lipoprotein apheresis Nephrotic syndrome Focal segmental glomerulosclerosis Hyperlipidemia Podocyte injury Liposorber® LA-15 System 

Notes

Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interest.

Supplementary material

467_2018_4061_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)

References

  1. 1.
    Lupien PJ, Moorjani S, Awad J (1976) A new approach to the management of familial hypercholesterolaemia: removal of plasma-cholesterol based on the principle of affinity chromatography. Lancet 1:1261–1265CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Stoffel W, Borberg H, Greve V (1981) Application of specific extracorporeal removal of low density lipoprotein in familial hypercholesterolaemia. Lancet 2:1005–1007CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Thompson GR (2003) LDL apheresis. Atherosclerosis 167:1–13CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kobayashi S (2008) Applications of LDL-apheresis in nephrology. Clin Exp Nephrol 12:9–15CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2018) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14:57–70CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Julius U (2018) Current role of lipoprotein apheresis in the treatment of high-risk patients. J Cardiovasc Dev Dis.  https://doi.org/10.3390/jcdd5020027 CrossRefGoogle Scholar
  7. 7.
    Muso E, Mune M, Hirano T, Hattori M, Kimura K, Watanabe T, Yokoyama H, Sato H, Uchida S, Wada T, Shoji T, Yuzawa Y, Takemura T, Sugiyama S, Nishizawa Y, Ogahara S, Yorioka N, Sakai S, Ogura Y, Yukawa S, Iino Y, Imai E, Matsuo S, Saito T (2015) Immediate therapeutic efficacy of low-density lipoprotein apheresis for drug-resistant nephrotic syndrome: evidence from the short-term results from the POLARIS Study. Clin Exp Nephrol 19:379–386CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Moorhead JF, Chan MK, El-Nahas M, Varghese Z (1982) Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2:1309–1311CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kasiske BL, O'Donnell MP, Cleary MP, Keane WF (1988) Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int 33:667–672CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ota T, Takamura T, Ando H, Nohara E, Yamashita H, Kobayashi K (2003) Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia 46:843–851CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Li C, Lim SW, Choi BS, Lee SH, Cha JH, Kim IS, Kim J, Yang CW (2005) Inhibitory effect of pravastatin on transforming growth factor beta1-inducible gene h3 expression in a rat model of chronic cyclosporine nephropathy. Am J Nephrol 25:611–620CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Shibata S, Nagase M, Fujita T (2006) Fluvastatin ameliorates podocyte injury in proteinuric rats via modulation of excessive Rho signaling. J Am Soc Nephrol 17:754–764CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Cormack-Aboud FC, Brinkkoetter PT, Pippin JW, Shankland SJ, Durvasula RV (2009) Rosuvastatin protects against podocyte apoptosis in vitro. Nephrol Dial Transplant 24:404–412CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nakamura T, Ushiyama C, Hirokawa K, Osada S, Inoue T, Shimada N, Koide H (2002) Effect of cerivastatin on proteinuria and urinary podocytes in patients with chronic glomerulonephritis. Nephrol Dial Transplant 17:798–802CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Pehlivanidis AN, Bouloukos VI, Elisaf M (2004) The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol 57:728–734CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sandhu S, Wiebe N, Fried LF, Tonelli M (2006) Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol 17:2006–2016CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kong X, Yuan H, Fan J, Li Z, Wu T, Jiang L (2013) Lipid-lowering agents for nephrotic syndrome. Cochrane Database Syst Rev:Cd005425.  https://doi.org/10.1002/14651858.CD005425.pub
  18. 18.
    Muso E (2014) Beneficial effect of LDL-apheresis in refractory nephrotic syndrome. Clin Exp Nephrol 18:286–290CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Tojo K, Sakai S, Miyahara T (1988) Possible therapeutic application of low density lipoprotein apheresis (LDL-A) in conjunction with double filtration plasmapheresis (DFPP) in drug-resistant nephrotic syndrome due to focal glomerular sclerosis (FGS). Nihon Jinzo Gakkai shi 30:1153–1160PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hattori M, Chikamoto H, Akioka Y, Nakakura H, Ogino D, Matsunaga A, Fukazawa A, Miyakawa S, Khono M, Kawaguchi H, Ito K (2003) A combined low-density lipoprotein apheresis and prednisone therapy for steroid-resistant primary focal segmental glomerulosclerosis in children. Am J Kidney Dis 42:1121–1130CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Yokoyama K, Sakai S, Sigematsu T, Takemoto F, Hara S, Yamada A, Kawaguchi Y, Hosoya T (1998) LDL adsorption improves the response of focal glomerulosclerosis to corticosteroid therapy. Clin Nephrol 50:1–7PubMedPubMedCentralGoogle Scholar
  22. 22.
    Muso E, Yashiro M, Matsushima M, Yoshida H, Sawanishi K, Sasayama S (1994) Does LDL-apheresis in steroid-resistant nephrotic syndrome affect prognosis? Nephrol Dial T ransplant 9:257–264Google Scholar
  23. 23.
    Muso E, Mune M, Fujii Y, Imai E, Ueda N, Hatta K, Imada A, Takemura T, Miki S, Kuwahara T, Takamitsu Y, Tsubakihara Y (2001) Significantly rapid relief from steroid-resistant nephrotic syndrome by LDL apheresis compared with steroid monotherapy. Nephron 89:408–415CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Muso E, Mune M, Fujii Y, Imai E, Ueda N, Hatta K, Imada A, Miki S, Kuwahara T, Takamitsu Y, Takemura T, Tsubakihara Y (1999) Low density lipoprotein apheresis therapy for steroid-resistant nephrotic syndrome. Kansai-FGS-Apheresis Treatment (K-FLAT) Study Group. Kidney Int Suppl 71:S122–S125CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Muso E, Mune M, Yorioka N, Nishizawa Y, Hirano T, Hattori M, Sugiyama S, Watanabe T, Kimura K, Yokoyama H, Sato H, Saito T (2007) Beneficial effect of low-density lipoprotein apheresis (LDL-A) on refractory nephrotic syndrome (NS) due to focal glomerulosclerosis (FGS). Clin Nephrol 67:341–344CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bobulescu IA (2010) Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 19:393–402CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ruan XZ, Varghese Z, Moorhead JF (2009) An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol 5:713–721CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Balson KR, Niall JF, Best JD (1996) Glomerular lipid deposition and proteinuria in a patient with familial dysbetalipoproteinaemia. J Intern Med 240:157–159CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jennette JC, Falk RJ (1990) Adult minimal change glomerulopathy with acute renal failure. Am J Kidney Dis 16:432–437CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Magil AB, Cohen AH (1989) Monocytes and focal glomerulosclerosis. LabInvest 61:404–409Google Scholar
  31. 31.
    Hovig T, Blomhoff JP, Holme R, Flatmark A, Gjone E (1978) Plasma lipoprotein alterations and morphologic changes with lipid deposition in the kidney of patients with hepatorenal syndrome. Lab Investig 38:540–549PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gubler MC, Lenoir G, Grunfeld JP, Ulmann A, Droz D, Habib R (1978) Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney Int 13:223–235CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Druilhet RE, Overturf ML, Kirkendall WM (1978) Cortical and medullary lipids of normal and nephrosclerotic human kidney. Int J BioChemiPhysics 9:729–734CrossRefGoogle Scholar
  34. 34.
    Sam R, Wu H, Yue L, Mazzone T, Schwartz MM, Arruda JA, Dunea G, Singh AK (2006) Lipoprotein glomerulopathy: a new apolipoprotein E mutation with enhanced glomerular binding. Am J Kidney Dis 47:539–548CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Johnson AC, Stahl A, Zager RA (2005) Triglyceride accumulation in injured renal tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int 67:2196–2209CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100:3077–3082CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Koyama K, Chen G, Lee Y, Unger RH (1997) Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Phys 273:E708–E713Google Scholar
  38. 38.
    Feldkamp T, Weinberg JM, Horbelt M, Von Kropff C, Witzke O, Nurnberger J, Kribben A (2009) Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation. Nephrol Dial Transplant 24:43–51CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Feldkamp T, Kribben A, Roeser NF, Senter RA, Weinberg JM (2006) Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation. Am J Phys Renal Phys 290:F465–F477Google Scholar
  41. 41.
    Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Axelsson J, Bergsten A, Qureshi AR, Heimburger O, Barany P, Lonnqvist F, Lindholm B, Nordfors L, Alvestrand A, Stenvinkel P (2006) Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int 69:596–604CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mitsnefes M, Kartal J, Khoury P, Daniels S (2007) Adiponectin in children with chronic kidney disease: role of adiposity and kidney dysfunction. Clin J Am Soc Nephrol 2:46–50CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Capettini LS, Montecucco F, Mach F, Stergiopulos N, Santos RA, da Silva RF (2012) Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des 18:963–970CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bussolati B, Deregibus MC, Fonsato V, Doublier S, Spatola T, Procida S, Di Carlo F, Camussi G (2005) Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. J Am Soc Nephrol 16:1936–1947CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chung JJ, Huber TB, Godel M, Jarad G, Hartleben B, Kwoh C, Keil A, Karpitskiy A, Hu J, Huh CJ, Cella M, Gross RW, Miner JH, Shaw AS (2015) Albumin-associated free fatty acids induce macropinocytosis in podocytes. J Clin Invest 125:2307–2316CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Okamura K, Dummer P, Kopp J, Qiu L, Levi M, Faubel S, Blaine J (2013) Endocytosis of albumin by podocytes elicits an inflammatory response and induces apoptotic cell death. PLoS One 8:e54817CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Yoshikawa N, Ito H, Akamatsu R, Hazikano H, Okada S, Matsuo T (1986) Glomerular podocyte vacuolation in focal segmental glomerulosclerosis. Arch Pathol Lab Med 110:394–398PubMedPubMedCentralGoogle Scholar
  49. 49.
    Jovin IS, Taborski U, Muller-Berghaus G (2000) Analysis of the long-term efficacy and selectivity of immunoadsorption columns for low density lipoprotein apheresis. ASAIO J 46:298–300CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Gordon BR, Kelsey SF, Bilheimer DW, Brown DC, Dau PC, Gotto AM Jr, Illingworth DR, Jones PH, Leitman SF, Prihoda JS et al (1992) Treatment of refractory familial hypercholesterolemia by low-density lipoprotein apheresis using an automated dextran sulfate cellulose adsorption system. The Liposorber Study Group. Am J Cardiol 70:1010–1016CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Armstrong VW, Schuff-Werner P, Eisenhauer T, Helmhold M, Stix M, Seidel D (1994) Heparin extracorporeal LDL precipitation (HELP): an effective apheresis procedure for lowering Lp (a) levels. Chem Phys Lipids 67-68:315–321CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Eisenhauer T, Armstrong VW, Wieland H, Fuchs C, Scheler F, Seidel D (1987) Selective removal of low density lipoproteins (LDL) by precipitation at low pH: first clinical application of the HELP system. Klin Wochenschr 65:161–168CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Schettler V, Monazahian M, Wieland E, Ramadori G, Grunewald RW, Thomssen R, Muller GA (2001) Reduction of hepatitis C virus load by H.E.L.P.-LDL apheresis. Eur J Clin Investig 31:154–155CrossRefGoogle Scholar
  54. 54.
    Moriarty PM, Gibson CA, Shih J, Matias MS (2001) C-reactive protein and other markers of inflammation among patients undergoing HELP LDL apheresis. Atherosclerosis 158:495–498CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bosch T, Lennertz A, Kordes B, Samtleben W (1999) Low density lipoprotein hemoperfusion by direct adsorption of lipoproteins from whole blood (DALI apheresis): clinical experience from a single center. Ther Apher 3:209–213CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bosch T, Schmidt B, Kleophas W, Otto V, Samtleben W (1997) LDL hemoperfusion—a new procedure for LDL apheresis: biocompatibility results from a first pilot study in hypercholesterolemic atherosclerosis patients. Artif Organs 21:1060–1065CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Oto J, Suga K, Matsuura S, Kondo S, Ohnishi Y, Inui D, Imanaka H, Kagami S, Nishimura M (2009) Low-density lipoprotein apheresis in a pediatric patient with refractory nephrotic syndrome due to focal segmental glomerulosclerosis. J Anesth 23:284–287CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kawasaki Y, Suzuki S, Matsumoto A, Takano K, Suyama K, Hashimoto K, Suzuki J, Suzuki H, Hosoya M (2007) Long-term efficacy of low-density lipoprotein apheresis for focal and segmental glomerulosclerosis. Pediatr Nephrol 22:889–892CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hattori M, Ito K, Kawaguchi H, Tanaka T, Kubota R, Khono M (1993) Treatment with a combination of low-density lipoprotein aphaeresis and pravastatin of a patient with drug-resistant nephrotic syndrome due to focal segmental glomerulosclerosis. Pediatr Nephrol 7:196–198CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Munoz M, Lumbreras J, Madrid A, Lara LE, Chocron S, Vilalta R, Ariceta G (2017) Complete remission of post-transplant recurrence of focal segmental glomerulosclerosis in children with the use of LDL-apheresis therapy: case report. Pediatric Transplantation. Wiley, Hoboken, p 63Google Scholar
  61. 61.
    Ito S, Machida H, Inaba A, Harada T, Okuyama K, Nakamura T, Aihara Y, Yokota S (2007) Amelioration of steroids and cyclosporine-resistant nephrotic syndrome by pravastatin. Pediatr Nephrol 22:603–606CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Tojo K, Sakai S, Miyahara T (1990) Therapeutic trial of low density lipoprotein apheresis (LDL-A) in conjunction with double filtration plasmapheresis (DFPP) in drug-resistant nephrotic syndrome due to focal glomerular sclerosis (FGS). Prog Clin Biol Res 337:193–194PubMedPubMedCentralGoogle Scholar
  63. 63.
    Ishikura K, Matsumoto S, Sako M, Tsuruga K, Nakanishi K, Kamei K, Saito H, Fujinaga S, Hamasaki Y, Chikamoto H, Ohtsuka Y, Komatsu Y, Ohta T, Nagai T, Kaito H, Kondo S, Ikezumi Y, Tanaka S, Kaku Y, Iijima K, Japanese Society for Pediatric N (2015) Clinical practice guideline for pediatric idiopathic nephrotic syndrome 2013: medical therapy. Clin Exp Nephrol 19:6–33CrossRefPubMedCentralGoogle Scholar
  64. 64.
    FDA (2018) Liposorber® LA-15 System FDA Executive Summary. Available from https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/PediatricAdvisoryCommittee/UCM601669.pdf. Accessed 20 April 2018
  65. 65.
    Sato Y, Tsunoda S, Nozue T, Pan Q, Wakasugi H, Yoshimura A (2012) Low-density lipoprotein apheresis therapy for steroid- and cyclosporine-resistant idiopathic membranous nephropathy. Intern Med 51:2597–2602CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kobayashi T, Ando Y, Umino T, Miyata Y, Muto S, Hironaka M, Asano Y, Kusano E (2006) Complete remission of minimal-change nephrotic syndrome induced by apheresis monotherapy. Clin Nephrol 65:423–426CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Iwahori T, Yoshida M (2000) Low-density lipoprotein apheresis can improve type AA systemic amyloidosis. Nephron 86:248–250CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Shibata T, Okabe E, Sumie A, Ishii T, Tomo T, Yasumori R, Nasu M, Nomura Y (1994) A case of nephrotic syndrome due to IgA nephropathy complicated by acute renal failure and ameriolated by low density lipoprotein (LDL) apheresis. Nihon Toseki Igakkai Zasshi 27:233–236CrossRefGoogle Scholar
  69. 69.
    Daimon S, Saga T, Nakayama M, Nomura Y, Chikaki H, Dan K, Koni I (2000) Dextran sulphate cellulose columns for the treatment of nephrotic syndrome due to inactive lupus nephritis. Nephrol Dial Transplant 15:235–238CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Shiraishi N, Kitamura K, Hayata M, Ogata T, Tajiri-Okamura K, Nakayama Y, Kohda Y, Tomita K, Mukoyama M (2015) Low-density lipoprotein apheresis for proteinuria in lupus nephritis with intraglomerular foam cells containing cholesterol crystals. Am J Kidney Dis 65:490–493CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ruf RG, Lichtenberger A, Karle SM, Haas JP, Anacleto FE, Schultheiss M, Zalewski I, Imm A, Ruf EM, Mucha B, Bagga A, Neuhaus T, Fuchshuber A, Bakkaloglu A, Hildebrandt F (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15:722–732CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Muso E, Mune M, Hirano T, Hattori M, Kimura K, Watanabe T, Yokoyama H, Sato H, Uchida S, Wada T, Shoji T, Takemura T, Yuzawa Y, Ogahara S, Sugiyama S, Iino Y, Sakai S, Ogura Y, Yukawa S, Nishizawa Y, Yorioka N, Imai E, Matsuo S, Saito T (2015) A prospective observational survey on the long-term effect of LDL apheresis on drug-resistant nephrotic syndrome. Nephron Extra 5:58–66CrossRefPubMedCentralGoogle Scholar
  73. 73.
    Tanaka A, Nakamura T, Sato E, Node K (2016) Impact of low-density lipoprotein apheresis for nephrotic syndrome in a patient with immunoglobulin M nephropathy. Nephrology 21:1073–1074CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Stenvinkel P, Alvestrand A, Angelin B, Eriksson M (2000) LDL-apheresis in patients with nephrotic syndrome: effects on serum albumin and urinary albumin excretion. Eur J Clin Investig 30:866–870CrossRefGoogle Scholar
  75. 75.
    Brunton C, Varghese Z, Moorhead JF (1999) Lipopheresis in the nephrotic syndrome. Kidney Int Suppl 71:S6–S9CrossRefPubMedCentralGoogle Scholar
  76. 76.
    Okada T, Takahashi H, Ogura M, Nakao T, Shimizu T (1996) Complete remission of steroid-resistant minimal-change nephrotic syndrome by cyclosporin after additional low-density lipoprotein apheresis treatment. Nihon Jinzo Gakkai shi 38:46–51PubMedPubMedCentralGoogle Scholar
  77. 77.
    FDA (2018) FDA Listing of CDRH Humanitarian Device Exemptions. Available from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfhde/hde.cfm?id=H170002. Accessed 20 April 2018
  78. 78.
    Sannomiya A, Murakami T, Koyama I, Nitta K, Nakajima I, Fuchinoue S (2018) Preoperative low-density lipoprotein apheresis for preventing recurrence of focal segmental glomerulosclerosis after kidney transplantation. J Transp Secur 2018:1–5Google Scholar
  79. 79.
    FDA (2013) A patient guide to the Liposorber LA-15 System. Available from https://www.accessdata.fda.gov/cdrh_docs/pdf12/H120005D.pdf. Accessed 20 April 2018
  80. 80.
    Blue Cross Blue Shield of North Carolina (2013) Blue Cross Blue Shield of North Carolina Corporate Medical Policy: lipid apheresis. Available from https://www.bluecrossnc.com/sites/default/files/document/attachment/services/public/pdfs/medicalpolicy/lipid_apheresis.pdf. Accessed 23 April 2018.
  81. 81.
    NIH (2014) Post approval study of Liposorber LA-15 System for the treatment of focal segmental glomerulosclerosis in children. Available from https://clinicaltrials.gov/ct2/show/NCT02235857. April 28 2018
  82. 82.
    FDA (2013) LIPOSORBER LA-15 SYSTEM operator’s manual. Available from www.accessdata.fda.gov/cdrh_docs/pdf12/H120005C.pdf April 26 2018

Copyright information

© IPNA 2018

Authors and Affiliations

  1. 1.Department of Pediatric NephrologyAkron Children’s HospitalAkronUSA
  2. 2.Department of NephrologyCleveland Clinic Akron General & Americare Kidney InstituteAkronUSA
  3. 3.Northeast Ohio Medical UniversityRootstownUSA

Personalised recommendations