Pediatric Nephrology

, Volume 22, Issue 11, pp 1903–1909 | Cite as

Renal hemodynamic changes and renal functional reserve in children with type I diabetes mellitus

  • Ann RaesEmail author
  • Raymond Donckerwolcke
  • Margarita Craen
  • Maraina Che Hussein
  • Johan Vande Walle
Original Article


Increased glomerular filtration rate (GFR) has been implicated in the development of diabetic nephropathy. Large normal interindividual variations of GFR hamper the diagnosis of renal hemodynamic alterations. We examined renal functional reserve (RFR) in children with type 1 diabetes mellitus to assess whether hyperfiltration occurs. The renal hemodynamic response following dopamine infusion was examined in 51 normoalbuminuric diabetic children (7.7 ± 3.6 years) with a mean duration of diabetes of 6.2 years and compared them with 34 controls. Mean baseline GFR in diabetic children did not differ from the control population (130.7 ± 22.9 vs. 124.8 ± 25 ml/min per 1.73 m2), whereas renal plasma flow was significantly lower (463.7 ± 103.9 vs. 587.2 ± 105 ml/min per 1.73 m2, p < 0.001), and filtration fraction was increased (29 ± 8 vs. 21 ± 2%, p < 0.001), compared with controls. The mean RFR was lower (p < 0.001) than in control subjects (−0.77 ± 23 vs. 21 ± 8 ml/min per 1.73 m2). This study documents an increased filtration fraction and reduced or absent RFR in children with type 1 diabetes mellitus in the stage before apparent nephropathy. GFR values were within normal range. Although the reduced RFR and increased filtration fraction indicate the presence of hemodynamic changes, their relevance to the development of hyperfiltration and subsequent diabetic nephropathy remains unknown.


Pediatrics Diabetes mellitus Renal function Dopamine Glomerular hyperfiltration 


  1. 1.
    Epidemiology of Diabetes Interventions and Complications (EDIC) (1999) Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22:99–111CrossRefGoogle Scholar
  2. 2.
    Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25:496–501CrossRefGoogle Scholar
  3. 3.
    Astrup AS, Tarnow L, Rossing P, Pietraszek L, Riis Hansen P, Parving HH (2005) Improved prognosis in type 1 diabetic patients with nephropathy: a prospective follow-up study. Kidney Int 68:1250–1257CrossRefGoogle Scholar
  4. 4.
    Hostetter TH (1992) Diabetic nephropathy. Metabolic versus hemodynamic considerations. Diabetes Care 15:1205–1215CrossRefGoogle Scholar
  5. 5.
    Brenner BM, Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA (1981) The role of glomerular hyperfiltration in the initiation and progression of diabetic nephropathy. Acta Endocrinol (Suppl)242:7–10Google Scholar
  6. 6.
    Mogensen CE (1986) Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest 46:201–206CrossRefGoogle Scholar
  7. 7.
    ter Wee PM, Donker AJ (1991) Renal reserve filtration capacity: can it predict progression of chronic renal failure? Am J Kidney Dis 17(5 Suppl 1):71–75PubMedGoogle Scholar
  8. 8.
    Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S (1983) Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med 75:943–950CrossRefGoogle Scholar
  9. 9.
    Mansy H, Patel D, Tapson JS, Fernandez J, Tapster S, Torrance AD Wilkinson R (1987) Four methods to recruit renal functional reserve. Nephrol Dial Transplant 2:228–232PubMedGoogle Scholar
  10. 10.
    ter Wee PM, Rosman JB, van der Geest S, Sluiter WJ, Donker AJ (1986) Renal hemodynamics during separate and combined infusion of amino acids and dopamine. Kidney Int 29:870–874CrossRefGoogle Scholar
  11. 11.
    ter Wee PM, Donker AJ (1994) Pharmacologic manipulation of glomerular function. Kidney Int 45:417–424CrossRefGoogle Scholar
  12. 12.
    ter Wee PM, Smit AJ, Rosman JB, Sluiter WJ, Donker AJ (1986) Effect of intravenous infusion of low-dose dopamine on renal function in normal individuals and in patients with renal disease. Am J Nephrol 6:42–46CrossRefGoogle Scholar
  13. 13.
    ter Wee PM, van Ballegooie E, Rosman JB, Meijer S, Donker AJ (1987) Renal reserve filtration capacity in patients with type 1 (insulin-dependent) diabetes mellitus. Nephrol Dial Transplant 2:504–509PubMedGoogle Scholar
  14. 14.
    ter Wee PM, van Ballegooie E, Rosman JB, Meijer S, Donker AJ (1986) The effect of low-dose dopamine on renal haemodynamics in patients with type 1 (insulin-dependent) diabetes does not differ from normal individuals. Diabetologia 29:78–81CrossRefGoogle Scholar
  15. 15.
    Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R (1981) Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int 20:700–704CrossRefGoogle Scholar
  16. 16.
    Vande Walle JG, Donckerwolcke RA, Koomans HA (1999) Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. J Am Soc Nephrol 10:323–331Google Scholar
  17. 17.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. Pediatrics 114(2 Suppl 4th report):555–576CrossRefGoogle Scholar
  18. 18.
    Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576PubMedGoogle Scholar
  19. 19.
    Woods LL, Mizelle HL, Hall JE (1987) Control of renal hemodynamics in hyperglycemia: possible role of tubuloglomerular feedback. Am J Physiol 252:F65–F73PubMedGoogle Scholar
  20. 20.
    Vallon V, Blantz RC, Thomson S (2003) Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol 14:530–537CrossRefGoogle Scholar
  21. 21.
    Chapman BJ, Horn NM, Munday KA, Robertson MJ (1980) The actions of dopamine and of sulpiride on regional blood flows in the rat kidney. J Physiol 298:437–452CrossRefGoogle Scholar
  22. 22.
    Schenarts PJ, Sagraves SG, Bard MR, Toschlog EA, Goettler CE, Newell MA, Rotondo MF (2006) Low-dose dopamine: a physiologically based review. Curr Surg 63:219–225CrossRefGoogle Scholar
  23. 23.
    Vande Walle J, Donckerwolcke R, Boer P, van Isselt HW, Koomans HA, Joles JA (1996) Blood volume, colloid osmotic pressure and F-cell ratio in children with the nephrotic syndrome. Kidney Int 49:1471–1477CrossRefGoogle Scholar
  24. 24.
    Van de Walle JG, Donckerwolcke RA, Greidanus TB, Joles JA, Koomans HA (1996) Renal sodium handling in children with nephrotic relapse: relation to hypovolaemic symptoms. Nephrol Dial Transplant 11:2202–2208CrossRefGoogle Scholar
  25. 25.
    Hellerstein S, Berenbom M, Erwin P, Wilson N, DiMaggio S (2004) Measurement of renal functional reserve in children. Pediatr Nephrol 19:1132–1136PubMedGoogle Scholar
  26. 26.
    Gamero M, Cuervo S, Rodriguez-Arango G, Guerrero S (1999) Función renal y reserva funcional renal en jóvenes que padecieron síndrome nefrótico a cambios mínimos en la infancia. An Esp Pediatr 50:455–458Google Scholar
  27. 27.
    Berg UB, Torbjornsdotter TB, Jaremko G, Thalme B (1988) Kidney morphological changes in relation to long-term renal function and metabolic control in adolescents with IDDM. Diabetologia 41:1047–1056CrossRefGoogle Scholar
  28. 28.
    Berg UB, Thalme B (1984) Early renal functional changes in children with insulin-dependent diabetes mellitus-their relation to metabolic control. Int J Pediatr Nephrol 5:16–21PubMedGoogle Scholar
  29. 29.
    Torbjornsdotter TB, Jaremko GA, Berg UB (2004) Nondipping and its relation to glomerulopathy and hyperfiltration in adolescents with type 1 diabetes. Diabetes Care 27:510–516CrossRefGoogle Scholar
  30. 30.
    Johansson BL, Berg U, Freyschuss U, Hall K, Troell S (1990) Factors related to renal haemodynamics in young type-1 diabetes mellitus patients. Pediatr Nephrol 4:589–592CrossRefGoogle Scholar
  31. 31.
    Laborde K, Levy-Marchal C, Kindermans C, Dechaux M, Czernichow P, Sachs C (1990) Glomerular function and microalbuminuria in children with insulin-dependent diabetes. Pediatr Nephrol 4:39–43CrossRefGoogle Scholar
  32. 32.
    Sackmann H, Tran-Van T, Tack I, Hanaire-Broutin H, Tauber JP, Ader JL (1998) Renal functional reserve in IDDM patients. Diabetologia 41:86–93CrossRefGoogle Scholar
  33. 33.
    Mogensen CE (1972) Glomerular filtration rate and renal plasma flow in long-term juvenile diabetics without proteinuria. Br Med J 4:257–259CrossRefGoogle Scholar
  34. 34.
    Raes A, Van Aken S, Craen M, Donckerwolcke R, Vande Walle J (2007) Lack of evidence of hypervolemia in children with insulin-dependent diabetes mellitus. Pediatr Nephrol 22:258–264CrossRefGoogle Scholar
  35. 35.
    Raes AM, Matthys D, Donckerwolcke R, Craen M, Van Aken S, Vande Walle J (2007) Renal functional changes in relation to hemodynamic parameters during exercise test in normoalbuminuric insulin-dependent children. Acta Paediatr 96:548–551CrossRefGoogle Scholar

Copyright information

© IPNA 2007

Authors and Affiliations

  • Ann Raes
    • 1
    Email author
  • Raymond Donckerwolcke
    • 1
  • Margarita Craen
    • 2
  • Maraina Che Hussein
    • 1
  • Johan Vande Walle
    • 1
  1. 1.Department of Pediatric NephrologyUniversity HospitalGentBelgium
  2. 2.Department of Pediatric EndocrinologyUniversity HospitalGentBelgium

Personalised recommendations