Advertisement

Robust dynamic analysis of detuned-mistuned rotating bladed disks with geometric nonlinearities

  • A. Picou
  • E. Capiez-Lernout
  • C. SoizeEmail author
  • M. Mbaye
Original Paper
  • 52 Downloads

Abstract

This work is devoted to the robust analysis of the effects of geometric nonlinearities on the nonlinear dynamic behavior of rotating detuned (intentionally mistuned) bladed disks in presence of unintentional mistuning (simply called mistuning). Mistuning induces uncertainties in the computational model, which are taken into account by a probabilistic approach. This paper presents a series of novel results of the dynamic behavior of such rotating bladed disks exhibiting nonlinear geometric effects. The structural responses in the time domain are analyzed in the frequency domain. The frequency analysis exhibits responses outside the frequency band of excitation. The confidence region of the stochastic responses allows the robustness to be analyzed with respect to uncertainties and also allows physical insights to be given concerning the structural sensitivity. The bladed disk structure is made up of 24 blades for which several different detuned patterns are investigated with and without mistuning.

Keywords

Mistuning Detuning Bladed disks Dynamics Geometric nonlinearities Uncertainty quantification 

Notes

References

  1. 1.
    Tobias S, Arnold R (1957) The influence of dynamical imperfection on the vibration of rotating disks. Proc Inst Mech Eng 171(1):669–690CrossRefGoogle Scholar
  2. 2.
    Ewins D (1969) The effects of detuning upon the forced vibrations of bladed disks. J Sound Vib 9(1):65–79CrossRefGoogle Scholar
  3. 3.
    Whitehead D (1998) The maximum factor by which forced vibration of blades can increase due to mistuning. ASME J Eng Gas Turbines Power 120(1):115–119CrossRefGoogle Scholar
  4. 4.
    Kruse M, Pierre C (1996) Forced response of mistuned bladed disks using reduced-order modeling. In: 37th Structure, structural dynamics and materials conference, p. 1545Google Scholar
  5. 5.
    Yang M-T, Griffin J (1997) A reduced order approach for the vibration of mistuned bladed disk assemblies. ASME J Eng Gas Turbines Power 119(1):161–167CrossRefGoogle Scholar
  6. 6.
    Castanier M, Pierre C (1997) Consideration on the benefits of intentional blade mistuning for the forced response of turbomachinery rotors. Anal Des Issues Mod Aerosp Veh 1997:419–425 Google Scholar
  7. 7.
    Bladh R, Castanier M, Pierre C (1999) Reduced order modeling and vibration analysis of mistuned bladed disk assemblies with shrouds. J Eng Gas Turbines Power 121(3):515–522CrossRefGoogle Scholar
  8. 8.
    Bladh R, Castanier M (2001) Component-mode-based reduced order modeling techniques for mistuned bladed disks-part 1: theoretical models. J Eng Gas Turbines Power 123(1):89–99CrossRefGoogle Scholar
  9. 9.
    Rivas-Guerras A, Mignolet M (2001) Local/global effects of mistuning on the forced response of bladed disks. In: ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers. pp V004T01A002–V004T01A002Google Scholar
  10. 10.
    Castanier M, Pierre C (2002) Using intentional mistuning in the design of turbomachinery rotors. AIAA Journal 40(10):2077–2086CrossRefGoogle Scholar
  11. 11.
    Feiner D, Griffin J (2002) A fundamental model of mistuning for a single family of modes. ASME J Turbomach 124(4):597–605CrossRefGoogle Scholar
  12. 12.
    Kenyon J, Griffin J, Feiner D (2003) Maximum bladed disk forced response from distortion of a structural mode. J Turbomach 125(2):352–363CrossRefGoogle Scholar
  13. 13.
    Lim S-H, Bladh R, Castanier M, Pierre C (2007) Compact, generalized component mode mistuning representation for modeling bladed disk vibration. AIAA Journal 45(9):2285–2298CrossRefGoogle Scholar
  14. 14.
    Beirow B, Figaschewsky F, Kühhorn A, Bornhorn A (2019) Vibration analysis of an axial turbine blisk with optimized intentional mistuning pattern. J Sound Vib 442:11–27CrossRefGoogle Scholar
  15. 15.
    Castanier M, Pierre C (1998) Investigation of the combined effects of intentional and random mistuning on the forced response of bladed disks. In: 34th AIAA/ASME/SAE/ASEE Joint propulsion conference and exhibit, p 3720Google Scholar
  16. 16.
    Mignolet M, Hu W, Jadic I (2000) On the forced response of harmonically and partially mistuned bladed disks. Part 2: partial mistuning and applications. Int J Rotating Mach 6(1):43–56CrossRefGoogle Scholar
  17. 17.
    Mignolet M, Rivas-Guerra A, Delor J (2001) Identification of mistuning characteristics of bladed disks from free response data—part 1. J Eng Gas Turbines Power 123(2):395–403CrossRefGoogle Scholar
  18. 18.
    Brown JM, Slater J, Grandhi R (2003) Probabilistic analysis of geometric uncertainty effects on blade modal response. In: ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference. American Society of Mechanical Engineers, pp 247–255Google Scholar
  19. 19.
    Lee S-Y, Castanier M, Pierre C (2005) Assessment of probabilistic methods for mistuned bladed disk vibration. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference, p 1990Google Scholar
  20. 20.
    Capiez-Lernout E, Soize C (2004) Nonparametric modeling of random uncertainties for dynamic response of mistuned bladed-disks. J Eng Gas Turbines Power 126(3):610–618CrossRefGoogle Scholar
  21. 21.
    Capiez-Lernout E, Soize C, Lombard J-P, Dupont C, Seinturier E (2005) Blade manufacturing tolerances definition for a mistuned industrial bladed disk. ASME J Eng Gas Turbines Power 125(3):621–628 CrossRefGoogle Scholar
  22. 22.
    Nyssen F, Arnst M, Golinval J-C (2014) Modeling of uncertainties in bladed disks using a nonparametric approach. In: ASME 2014 International design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V008T11A068–V008T11A068Google Scholar
  23. 23.
    Choi B-K, Lentz J, Rivas-Guerra J, Mignolet MP (2002) Optimization of intentional mistuning patterns for the reduction of the forced response effects of unintentional mistuning: Formulation and assessment. J Eng Gas Turbines Power 125(1):131–140 CrossRefGoogle Scholar
  24. 24.
    Han Y, Mignolet M (2008) Optimization of intentional mistuning patterns for the mitigation of the effects of random mistuning. In: ASME Turbo Expo 2008: Power for Land, Sea, and Air. American Society of Mechanical Engineers, pp 601–609Google Scholar
  25. 25.
    Mbaye M, Soize C, Ousty J-P, Capiez-Lernout E (2013) Robust analysis of design in vibration of turbomachines. J Turbomach 135(2):021008CrossRefGoogle Scholar
  26. 26.
    Han Y, Murthy R, Mignolet M-P, Lentz J (2014) Optimization of intentional mistuning patterns for the mitigation of the effects of random mistuning. J Eng Gas Turbines Power 136(6):062505CrossRefGoogle Scholar
  27. 27.
    Vakakis A (1992) Dynamics of a nonlinear periodic structure with cyclic symmetry. Acta Mech 95(1–4):197–226MathSciNetCrossRefGoogle Scholar
  28. 28.
    Grolet A, Thouverez F (2010) Vibration analysis of a nonlinear system with cyclic symmetry. In: ASME Turbo Expo 2010: Power for Land, Sea, and Air. American Society of Mechanical Engineers, pp 917–929Google Scholar
  29. 29.
    Martin A, Thouverez F (2019) Dynamic analysis and reduction of a cyclic symmetric system subjected to geometric nonlinearities. J Eng Gas Turbines Power 141(4):041027CrossRefGoogle Scholar
  30. 30.
    Capiez-Lernout E, Soize C, Mbaye M (2015) Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity. J Sound Vib 356:124–143CrossRefGoogle Scholar
  31. 31.
    Willeke S, Keller C, Panning-von Scheidt J, Seume JR, Wallaschek J (2017) Reduced-order modeling of mistuned bladed disks considering aerodynamic coupling and mode family interaction. In: 12th European conference on turbomachinery fluid dynamics and thermodynamicsGoogle Scholar
  32. 32.
    Keller C, Kellersmann A, Friedrichs J, Seume JR (2017) Influence of geometric imperfections on aerodynamic and aeroelastic behavior of a compressor blisk. In: Proceedings of the Asme turbo expo: turbine technical conference and exposition, 2017, Vol 7B, 2017, ASME turbo expo: turbine technical conference and exposition, Charlotte, NC, Jun 26-30Google Scholar
  33. 33.
    Martel C, Sanchez-Alvarez JJ (2018) Intentional mistuning effect in the forced response of rotors with aerodynamic damping. J Sound Vib 433:212–229CrossRefGoogle Scholar
  34. 34.
    Sirovich L (1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math 45(3):561–571MathSciNetCrossRefGoogle Scholar
  35. 35.
    Cizmas P, Richardson B, Brenner T, OBrien T, Breault R (2008) Acceleration techniques for reduced-order models based on proper orthogonal decomposition. J Comput Phys 227(16):7791–7812MathSciNetCrossRefGoogle Scholar
  36. 36.
    Soize C (2017) Uncertainty quantification: an accelerated course with advanced applications in computational engineering. Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Desceliers C, Soize C (2004) Nonlinear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization. Int J Nonlinear Mech 39:343–368CrossRefGoogle Scholar
  38. 38.
    Genta G (1998) Vibration of structures and machines: practical aspects. Springer, BerlinGoogle Scholar
  39. 39.
    Ehrich F (2004) Handbook of rotordynamics. Krieger Publishing Company, MalabarGoogle Scholar
  40. 40.
    Rao JS (2011) History of rotating machinery dynamics. History of mechanism and machine science, vol 20, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  41. 41.
    Mignolet M, Przekop A, Rizzi S, Spottswood S (2013) A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J Sound Vib 332(10):2437–2460CrossRefGoogle Scholar
  42. 42.
    Laxalde D, Salles L, Blanc L, Thouverez F, et al (2008) Non-linear modal analysis for bladed disks with friction contact interfaces. In: ASME Turbo Expo 2008: Power for Land, Sea, and Air. American Society of Mechanical Engineers Digital Collection, pp 457–467Google Scholar
  43. 43.
    Joannin C, Thouverez F, Chouvion B (2018) Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis. Comput Struct 203:18–33CrossRefGoogle Scholar
  44. 44.
    Golub G, Van Loan C (2012) Matrix computations, vol 3. JHU Press, BaltimorezbMATHGoogle Scholar
  45. 45.
    Mignolet M-P, Soize C (2008) Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Comput Methods Appl Mech Eng 197(45–48):3951–3963MathSciNetCrossRefGoogle Scholar
  46. 46.
    Capiez-Lernout E, Soize C, Mignolet M-P (2012) Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity. Comput Mech 49(1):87–97MathSciNetCrossRefGoogle Scholar
  47. 47.
    Capiez-Lernout E, Soize C (2017) An improvement of the uncertainty quantification in computational structural dynamics with nonlinear geometrical effects. Int J Uncertain Quantif 7(1):83–98MathSciNetCrossRefGoogle Scholar
  48. 48.
    Soize C (2000) A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Probab Eng Mech 15(3):277–294CrossRefGoogle Scholar
  49. 49.
    Picou A, Capiez-Lernout E, Soize C, Mbaye M (2018) Effects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk. In: Conference on noise and vibration engineering (ISMA 2018), KU Leuven, pp 1–11Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Picou
    • 1
  • E. Capiez-Lernout
    • 1
  • C. Soize
    • 1
    Email author
  • M. Mbaye
    • 2
  1. 1.Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRSUniversité Paris-Est Marne-La-ValléeMarne-La-Vallée Cedex 02France
  2. 2.Safran Tech, Modeling and SimulationMagny-Les-HameauxFrance

Personalised recommendations