GENERIC-based formulation and discretization of initial boundary value problems for finite strain thermoelasticity

  • Peter BetschEmail author
  • Mark Schiebl
Original Paper


A new variational formulation for finite strain thermoelastodynamics is proposed. The variational formulation emanates from the GENERIC formalism and makes possible the free choice of the thermodynamic state variable. In particular, one may choose the absolute temperature, the internal energy density or the entropy density as state variable. To solve initial boundary value problems, the GENERIC formalism is extended to open systems. The discretization in time makes use of the standard mid-point rule. Depending on the choice of the thermodynamic state variable structure-preserving schemes are obtained. For example, choosing the internal energy as state variable yields a new energy–momentum consistent scheme. Thus the newly developed GENERIC-based weak form is particularly well suited for the design of structure-preserving methods. Numerical investigations are presented which confirm the theoretical findings and shed light on the numerical stability of the newly developed schemes.


Thermoelastic Finite element Finite deformation Transient 



Support for this research was provided by the Deutsche Forschungsgemeinschaft (DFG) under Grant BE 2285/13-1. This support is gratefully acknowledged.


  1. 1.
    Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Hütter M, Tervoort TA (2008) Finite anisotropic elasticity and material frame indifference from a nonequilibrium thermodynamics perspective. J Non Newton Fluid Mech 152(1–3):45–52CrossRefGoogle Scholar
  3. 3.
    Hütter M, Svendsen B (2011) On the formulation of continuum thermodynamic models for solids as general equations for non-equilibrium reversible–irreversible coupling. J Elast 104(1–2):357–368MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hütter M, Svendsen B (2012) Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible–irreversible coupling. Contin Mech Thermodyn 24(3):211–227MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mielke A (2011) Formulation of thermoelastic dissipative material behavior using GENERIC. Contin Mech Thermodyn 23(3):233–256MathSciNetCrossRefGoogle Scholar
  6. 6.
    Romero I (2009) Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int J Numer Methods Eng 79(6):706–732MathSciNetCrossRefGoogle Scholar
  7. 7.
    Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: part I: monolithic integrators and their application to finite strain thermoelasticity. Comput Methods Appl Mech Eng 199(25–28):1841–1858MathSciNetCrossRefGoogle Scholar
  8. 8.
    Betsch P (ed) (2016) Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics. Volume 565 of CISM courses and lectures. Springer, BerlinGoogle Scholar
  9. 9.
    Romero I (2013) A characterization of conserved quantities in non-equilibrium thermodynamics. Entropy 15:5580–5596CrossRefGoogle Scholar
  10. 10.
    Krüger M, Groß M, Betsch P (2016) An energy–entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua. ZAMM 96(2):141–178MathSciNetCrossRefGoogle Scholar
  11. 11.
    Groß M, Betsch P (2011) Galerkin-based energy–momentum consistent time-stepping algorithms for classical nonlinear thermo-elastodynamics. Math Comput Simul 82(4):718–770MathSciNetCrossRefGoogle Scholar
  12. 12.
    García Orden JC, Romero I (2012) Energy–Entropy–Momentum integration of discrete thermo-visco-elastic dynamics. Eur J Mech A Solids 32:76–87MathSciNetCrossRefGoogle Scholar
  13. 13.
    Groß M, Bartelt M, Betsch P (2018) Structure-preserving time integration of non-isothermal finite viscoelastic continua related to variational formulations of continuum dynamics. Comput Mech 62(2):123–150MathSciNetCrossRefGoogle Scholar
  14. 14.
    Krüger M, Groß M, Betsch P (2011) A comparison of structure-preserving integrators for discrete thermoelastic systems. Comput Mech 47(6):701–722. MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Conde Martín S, Betsch P, García Orden JC (2016) A temperature-based thermodynamically consistent integration scheme for discrete thermo-elastodynamics. Commun Nonlinear Sci Numer Simul 32:63–80CrossRefGoogle Scholar
  16. 16.
    Conde Martín S, García Orden JC (2017) On energy–entropy–momentum integration methods for discrete thermo-visco-elastodynamics. Comput Struct 181:3–20CrossRefGoogle Scholar
  17. 17.
    Portillo D, García Orden JC, Romero I (2017) Energy–entropy–momentum integration schemes for general discrete non-smooth dissipative problems in thermomechanics. Int J Numer Methods Eng 112(7):776–802MathSciNetCrossRefGoogle Scholar
  18. 18.
    Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems with internal microstructure. Oxford University Press, OxfordGoogle Scholar
  19. 19.
    Gonzalez O, Stuart AM (2008) A first course in continuum mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    Marsden JE, Ratiu TS (1994) Introduction to mechanics and symmetry. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Edwards BJ (1998) An analysis of single and double generator thermodynamic formalisms for the macroscopic description of complex fluids. J Non Equilib Thermodyn 23(4):301–333zbMATHGoogle Scholar
  22. 22.
    Groß M (2009) High-order accurate and energy–momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity. Habilitation thesis, University of Siegen, Chair of Computational Mechanics. Schriftenreihe des Lehrstuhls für Numerische Mechanik, Band II, urn:nbn:de:hbz:467-3890
  23. 23.
    Öttinger HC (2006) Nonequilibrium thermodynamics for open systems. Phys Rev E 73:036126MathSciNetCrossRefGoogle Scholar
  24. 24.
    Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  25. 25.
    Miehe C (1995) Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput Methods Appl Mech Eng 120:243–269MathSciNetCrossRefGoogle Scholar
  26. 26.
    Balzani D, Gandhi A, Tanaka M, Schröder J (2015) Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices. Comput Mech 55(5):861–871MathSciNetCrossRefGoogle Scholar
  27. 27.
    Netz T, Hartmann S (2015) A monolithic finite element approach using high-order schemes in time and space applied to finite strain thermo-viscoelasticity. Comput Math Appl 70(7):1457–1480MathSciNetCrossRefGoogle Scholar
  28. 28.
    Holzapfel GA, Simo JC (1996) Entropy elasticity of isotropic rubber-like solids at finite strains. Comput Methods Appl Mech Eng 132(1–2):17–44MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hesch C, Betsch P (2011) Energy–momentum consistent algorithms for dynamic thermomechanical problems: application to mortar domain decomposition problems. Int J Numer Methods Eng 86(11):1277–1302MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hughes TJR (2000) The finite element method. Dover Publications, New YorkzbMATHGoogle Scholar
  31. 31.
    Gurtin ME (1975) Thermodynamics and stability. Arch Ration Mech Anal 59(1):63–96MathSciNetCrossRefGoogle Scholar
  32. 32.
    Betsch P, Schiebl M (2019) Energy–momentum–entropy consistent numerical methods for large strain thermoelasticity relying on the GENERIC formalism. Int J Numer Methods Eng 119(12):1216–1244Google Scholar
  33. 33.
    Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations