Advertisement

Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH)

  • Jan-Philipp FürstenauEmail author
  • Christian Weißenfels
  • Peter Wriggers
Original Paper
  • 32 Downloads

Abstract

In this work a Dirichlet pressure boundary condition for incompressible Smoothed Particle Hydrodynamics (SPH) is presented for free surfaces under surface tension. These free surfaces occur when the surrounding phase in simulations is neglected for computational reasons while the effects of the surface tension shall remain. We demonstrate capabilities of the boundary condition by comparing it to an approach from the literature. The simulations show that our approach provides a higher stability to the free surface, being capable of capturing static and transient processes as much as bubble coalescence. Furthermore a new approach is presented to compute the curvature more exactly for three-dimensional cases in order to stabilize the simulation, which is applicable for weakly compressible SPH and incompressible SPH simulations.

Keywords

SPH ISPH Boundary condition Surface tension PPE Free surface Coalescence 

Notes

References

  1. 1.
    Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021CrossRefGoogle Scholar
  2. 2.
    Aly AM, Asai M, Sonda Y (2013) Modelling of surface tension force for free surface flows in ISPH method. Int J Numer Methods Heat Fluid Flow 23(3):479–498MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blank M, Nair P, Pöschel T (2019) Capillary viscous flow and melting dynamics: coupled simulations for additive manufacturing applications. Int J Heat Mass Transf 131:1232–1246CrossRefGoogle Scholar
  4. 4.
    Bøckmann A, Shipilova O, Skeie G (2012) Incompressible SPH for free surface flows. Comput Fluids 67:138–151MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brackbill J, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Modell 22(12):981–993CrossRefGoogle Scholar
  7. 7.
    Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264MathSciNetCrossRefGoogle Scholar
  8. 8.
    Colagrossi A, Antuono M, Souto-Iglesias A, Le Touzé D (2011) Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. Phys Rev E 84:026705.  https://doi.org/10.1103/PhysRevE.84.026705 CrossRefGoogle Scholar
  9. 9.
    Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475CrossRefGoogle Scholar
  10. 10.
    Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) Dualsphysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216CrossRefGoogle Scholar
  11. 11.
    Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152(2):584–607MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fürstenau JP, Avci B, Wriggers P (2016) A numerical review of multi-fluid SPH algorithms for high density ratios. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation. Modeling and simulation in science, engineering and technology. Birkhäuser, Cham, pp 139–150CrossRefGoogle Scholar
  13. 13.
    Fürstenau JP, Avci B, Wriggers P (2017) A comparative numerical study of pressure-poisson-equation discretization strategies for SPH. In: 12th international SPHERIC workshop, Ourense, Spain, pp 1–8Google Scholar
  14. 14.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389CrossRefGoogle Scholar
  15. 15.
    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hirschler M, Kunz P, Huber M, Hahn F, Nieken U (2016) Open boundary conditions for ISPH and their application to micro-flow. J Comput Phys 307:614–633MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hirschler M, Oger G, Nieken U, Le Touzé D (2017) Modeling of droplet collisions using smoothed particle hydrodynamics. Int J Multiph Flow 95:175–187MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hu H, Eberhard P (2017) Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics. Comput Part Mech 4(4):473–486.  https://doi.org/10.1007/s40571-016-0140-5 CrossRefGoogle Scholar
  19. 19.
    Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Gr 20(3):426–435CrossRefGoogle Scholar
  21. 21.
    Landau L, Lifshitz E (1959) Course of theoretical physics. Fluid mechanics, vol 6. Elsevier, LondonGoogle Scholar
  22. 22.
    Lind S, Xu R, Stansby P, Rogers B (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRefGoogle Scholar
  24. 24.
    Lukarski D, Trost N (2014) Paralution project. http://www.paralution.com
  25. 25.
    Monaghan J, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetCrossRefGoogle Scholar
  26. 26.
    Monaghan JJ (1982) Why particle methods work. SIAM J Sci Stat Comput 3(4):422–433MathSciNetCrossRefGoogle Scholar
  27. 27.
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574CrossRefGoogle Scholar
  28. 28.
    Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353CrossRefGoogle Scholar
  29. 29.
    Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226CrossRefGoogle Scholar
  30. 30.
    Nair P, Tomar G (2014) An improved free surface modeling for incompressible SPH. Comput Fluids 102:304–314MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nair P, Tomar G (2019) Simulations of gas-liquid compressible-incompressible systems using SPH. Comput Fluids 179:301–308MathSciNetCrossRefGoogle Scholar
  32. 32.
    Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492MathSciNetCrossRefGoogle Scholar
  33. 33.
    Rider WJ (1995) Approximate projection methods for incompressible flow: implementation, variants and robustness. In: LANL UNCLASSIFIED REPORT LA-UR-94-2000, LOS ALAMOS NATIONAL LABORATORY. CiteseerGoogle Scholar
  34. 34.
    Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187MathSciNetCrossRefGoogle Scholar
  35. 35.
    Shao S, Lo EY (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800CrossRefGoogle Scholar
  36. 36.
    Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. ACM, pp 517–524Google Scholar
  37. 37.
    Szewc K, Tanière A, Pozorski J, Minier JP (2012) A study on application of smoothed particle hydrodynamics to multi-phase flows. Int J Nonlinear Sci Numer Simul 13(6):383–395MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396.  https://doi.org/10.1007/BF02123482 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zhang M (2010) Simulation of surface tension in 2d and 3d with smoothed particle hydrodynamics method. J Comput Phys 229(19):7238–7259MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jan-Philipp Fürstenau
    • 1
    Email author
  • Christian Weißenfels
    • 1
  • Peter Wriggers
    • 1
  1. 1.Institute of Continuum MechanicsLeibniz University HannoverHannoverGermany

Personalised recommendations