Advertisement

Computational Mechanics

, Volume 64, Issue 6, pp 1685–1697 | Cite as

Coupling multi-fidelity kriging and model-order reduction for the construction of virtual charts

  • Stéphane Nachar
  • Pierre-Alain Boucard
  • David NéronEmail author
  • Felipe Bordeu
Original Paper
  • 105 Downloads

Abstract

This article presents the coupling between multi-fidelity kriging and a database generated on-the-fly by model reduction to accelerate the generation of a surrogate model. The two-level multi-fidelity kriging method Evofusion is used for data fusion. The remarkable point is the generation of low-fidelity and high-fidelity observations from the same solver using the Proper Generalized Decomposition, a model-order reduction method. A 17 \(\times \) speedup is obtained here on an elasto-viscoplastic test case.

Keywords

Metamodels Reduced-order models Viscoplasticity Data fusion 

Notes

Acknowledgements

This work was supported by Ministry of Higher Education, Research and Innovation (France) and SAFRAN Tech. This work was also performed using HPC resources from the “Mesocentre” computing center of CentraleSupélec and École normale supérieure Paris-Saclay supported by CNRS and Région Île-de-France (http://mesocentre.centralesupelec.fr/).

References

  1. 1.
    Aversano G, Parra-Alvarez JC, Isaac BJ, Smith ST, Coussement A, Gicquel O, Parente A (2018) PCA and Kriging for the efficient exploration of consistency regions in Uncertainty Quantification. In: Proceedings of the combustion institute.  https://doi.org/10.1016/j.proci.2018.07.040 CrossRefGoogle Scholar
  2. 2.
    Bhattacharyya M, Fau A, Nackenhorst U, Néron D, Ladevèze P (2017) A LATIN-based model reduction approach for the simulation of cycling damage. Comput Mech 62(4):725–743.  https://doi.org/10.1007/s00466-017-1523-z MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boucard PA, Buytet S, Guidault PA (2009) A multiscale strategy for structural optimization. Int J Numer Methods Eng 78(1):101–126.  https://doi.org/10.1002/nme.2484 CrossRefzbMATHGoogle Scholar
  4. 4.
    Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808–817Google Scholar
  5. 5.
    Chinesta F, Keunings R, Leygue A (2014) The proper generalized decomposition for advanced numerical simulations. Springer briefs in applied sciences and technology. Springer, ChamCrossRefGoogle Scholar
  6. 6.
    Courrier N, Boucard PA, Soulier B (2016) Variable-fidelity modeling of structural analysis of assemblies. J Glob Optim 64(3):577–613.  https://doi.org/10.1007/s10898-015-0345-9 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cressie N (2015) Statistics for spatial data. Wiley, New YorkzbMATHGoogle Scholar
  8. 8.
    De Lozzo M (2015) Substitution de modèle et approche multifidélité en expérimentation numérique. Journal de la Société Française de Statistique 156(4):21–55zbMATHGoogle Scholar
  9. 9.
    Forrester AI, Bressloff NW, Keane AJ (2006) Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proc R Soc A Math Phys Eng Sci 462(2071):2177–2204.  https://doi.org/10.1098/rspa.2006.1679 CrossRefzbMATHGoogle Scholar
  10. 10.
    Forrester AIJ, Keane AJ, Bressloff NW (2006) Design and analysis of “Noisy” computer experiments. AIAA J 44(10):2331–2339CrossRefGoogle Scholar
  11. 11.
    Forrester AIJ, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Lond A Math Phys Eng Sci 463(2088):3251–3269.  https://doi.org/10.1098/rspa.2007.1900 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Han Z, Zimmerman R, Görtz S (2012) Alternative Cokriging method for variable-fidelity surrogate modeling. AIAA J 50(5):1205–1210.  https://doi.org/10.2514/1.J051243 CrossRefGoogle Scholar
  13. 13.
    Han ZH, Görtz S (2012) A hierarchical kriging model for variable-fidelity surrogate modeling of aerodynamic functions. AIAA J 50(9):1885–1896CrossRefGoogle Scholar
  14. 14.
    Han ZH, Zimmermann R, Görtz S (2010) A new Cokriging method for variable-fidelity surrogate modeling of aerodynamic data. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace expositionGoogle Scholar
  15. 15.
    Heyberger C, Boucard PA, Néron D (2013) A rational strategy for the resolution of parametrized problems in the PGD framework. Comput Methods Appl Mech Eng 259:40–49.  https://doi.org/10.1016/j.cma.2013.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jones DR (2001) A taxonomy of global optimization methods based on response surface. J Glob Optim 21:345–383MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kleijnen JP (1998) Experimental design for sensitivity analysis, optimization, and validation of simulation models. Handbook of simulation. Wiley, New York, pp 173–223CrossRefGoogle Scholar
  20. 20.
    Kleijnen JPC, van Beers WCM (2004) Application-driven sequential designs for simulation experiments: Kriging metamodelling. J Oper Res Soc 55(8):876–883.  https://doi.org/10.1057/palgrave.jors.2601747 CrossRefzbMATHGoogle Scholar
  21. 21.
    Kramer B, Marques AN, Peherstorfer B, Villa U, Willcox K (2017) Multifidelity probability estimation via fusion of estimators. J Comput Phys 392:385–402MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ladevèze P (1985) Sur une famille d’algorithmes en mécanique des structures. Comptes-rendus des séances de l’Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l’univers, sciences de la terre 300(2):41–44MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ladevèze P (1999) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Mechanical engineering series. Springer, New YorkCrossRefGoogle Scholar
  24. 24.
    Laurent L, Riche RL, Soulier B, Boucard PA (2017) An overview of gradient-enhanced metamodels with applications. Arch. Comput. Methods Eng. 26:61–106.  https://doi.org/10.1007/s11831-017-9226-3 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Le Gratiet L (2013) Recursive co-kriging model for design of computer experiments with multiple levels of fidelity with an application to hydrodynamic. Int J Uncertain Quantif 4(5):365–386CrossRefGoogle Scholar
  26. 26.
    Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, CambridgezbMATHGoogle Scholar
  27. 27.
    Maday Y, Ronquist E (2004) The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258.  https://doi.org/10.1137/S1064827502419932 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61CrossRefGoogle Scholar
  29. 29.
    Nachar S (2018) Einstein summation for MATLAB. Zenodo.  https://doi.org/10.5281/zenodo.1297570 CrossRefGoogle Scholar
  30. 30.
    Néron D, Boucard PA, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275–292MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23–24):1603–1626.  https://doi.org/10.1016/j.cma.2010.01.009 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Picheny V, Ginsbourger D, Roustant O, Haftka RT, Kim NH (2010) Adaptive designs of experiments for accurate approximation of target regions. J Mech Des 132(7):1–9CrossRefGoogle Scholar
  33. 33.
    Quarteroni A, Manzoni A, Negri F (2016) Reduced basis methods for partial differential equations, UNITEXT, vol 92. Springer, ChamzbMATHGoogle Scholar
  34. 34.
    Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. Adaptive computation and machine learning. MIT Press, CambridgezbMATHGoogle Scholar
  35. 35.
    Relun N, Néron D, Boucard PA (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51(1):83–92.  https://doi.org/10.1007/s00466-012-0706-x MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6(1):15–32.  https://doi.org/10.1214/ss/1177011926 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Vitse M, Néron D, Boucard PA (2014) Virtual charts of solutions for parametrized nonlinear equations. Comput Mech 54(6):1529–1539.  https://doi.org/10.1007/s00466-014-1073-6 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Willcox K (2006) Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput Fluids 35(2):208–226CrossRefGoogle Scholar
  39. 39.
    Zimmerman DL, Holland DM (2005) Complementary co-kriging: spatial prediction using data combined from several environmental monitoring networks. Environmetrics 16:219–234MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zimmermann R, Han ZH (2010) Simplified cross-correlation estimation for multi-fidelity surrogate Cokriging models. Adv Appl Math Sci 7(2):181–201MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stéphane Nachar
    • 1
  • Pierre-Alain Boucard
    • 1
  • David Néron
    • 1
    Email author
  • Felipe Bordeu
    • 2
  1. 1.LMT/ENS Paris-Saclay/CNRS/Université Paris-SaclayCachanFrance
  2. 2.SAFRAN TechMagny-les-HameauxFrance

Personalised recommendations