Advertisement

Computational Mechanics

, Volume 64, Issue 5, pp 1289–1301 | Cite as

Finite strain visco-elastic growth driven by nutrient diffusion: theory, FEM implementation and an application to the biofilm growth

  • Meisam SoleimaniEmail author
Original Paper

Abstract

In this paper, a thermodynamically consistent visco-elastic growth model driven by nutrient diffusion is presented in the finite deformation framework. Growth phenomena usually occur in biological tissues. Systems involving growth are known to be open systems with a continuous injection of mass into the system which results in volume expansion. Here the growth is driven by the diffusion of a nutrient. It implies that the diffusion equation for the nutrient concentration needs to be solved in conjunction with the conservation equation of mass and momentum. Hence, the problem falls into the multi-physics class. Additionally, a viscous rheological model is introduced to account for stress relaxation. Although the emergence of residual stresses is inherent to the growth process, the viscous behaviour of the material determines to what extend such stresses remain in the body. The numerical implementation is performed using the symbolic tool Ace-Gen while employing a fully implicit and monolithic scheme.

Keywords

Visco-elasticity Biological growth Finite strain Biofilm growth 

Notes

References

  1. 1.
    Abi-Akl R, Abeyaratne R, Cohen T (2019) Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proc R Soc A 475:20180465MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albero BA, Ehret AE, Böl M (2014) A new approach to the simulation of microbial biofilms by a theory of fluid-like pressure-restricted finite growth. Comput Methods Appl Mech Eng 272:271–289MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789CrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett KC, Regueiro RA, Borja RI (2016) Finite strain elastoplasticity considering Eshelby stress for materials undergoing plastic volume change. Int J Plast 77:214–245CrossRefGoogle Scholar
  5. 5.
    Chester SA, Anand L (2010) A coupled theory of fluid permeation and large deformations for elastomeric materials. J Mech Phys Solids 58:1879–1906MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cowin SC, Hegedus DH (1976) Bone remodeling: theory of adaptive elasticity. J Elast 6(3):313–326MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cyron CJ, Humphrey JD (2017) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dillon R, Fauci L, Fogelson A, Gaver D (1996) Modeling biofilm processes using the immersed boundary method. J Comput Phys 129(1):57–73CrossRefzbMATHGoogle Scholar
  10. 10.
    Dortdivanlioglu B, Linder C (2019) Diffusion-driven swelling-induced instabilities of hydrogels. J Mechan Phys Solids 125:38–52MathSciNetCrossRefGoogle Scholar
  11. 11.
    Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16(7):951–978CrossRefzbMATHGoogle Scholar
  12. 12.
    Feng D, Neuweiler I, Nackenhorst U (2017) A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model. Comput Mech 59(6):1049–1070MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gebara F (1999) Activated sludge biofilm wastewater treatment system. Water Res 33(1):230–238CrossRefGoogle Scholar
  14. 14.
    Goriely A (2017) The mathematics and mechanics of biological growth. Springer, New YorkCrossRefzbMATHGoogle Scholar
  15. 15.
    Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodeling: a stability criterion and a time stepping method. Int J Numer Method Eng 36:837–854CrossRefGoogle Scholar
  16. 16.
    Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modeling of isotropic multiplicative growth. Comput Model Eng Sci 4(2):119–134zbMATHGoogle Scholar
  17. 17.
    Holzapfel GA (1999) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng 39(22):3903–3926CrossRefzbMATHGoogle Scholar
  18. 18.
    Klapper I (2002) Dockery J Finger formation in biofilm layers. SIAM J Appl Math 62(3):853–869MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  20. 20.
    Kreft JU, Booth G, Wimpenny JWT (1998) BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275–3287CrossRefGoogle Scholar
  21. 21.
    Kreft JU, Picioreanu C, Wimpenny JWT (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912CrossRefGoogle Scholar
  22. 22.
    Lardon LA, Merkey BV, Martins S, Dtsch A, Picioreanu C, Kreft JU, Smets BF (2011) iDynoMiCS: next-generation individual-based modeling of biofilms. Environ Microbiol 13(9):2416–2434CrossRefGoogle Scholar
  23. 23.
    Lear G, Lewis GD (2012) Microbial biofilms: current research and applications. Caister Academic Press, NorfolkGoogle Scholar
  24. 24.
    Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33CrossRefGoogle Scholar
  25. 25.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling:application for growth in gel beads. Biotechnol Bioeng 57(6):718–731CrossRefGoogle Scholar
  26. 26.
    Picioreanu C, Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modeling of biofilm structure. Water Sci Technol 39:115–122CrossRefGoogle Scholar
  27. 27.
    Picioreanu C, Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515CrossRefGoogle Scholar
  28. 28.
    Rath H, Feng D, Neuweiler I, Stumpp NS, Nackenhorst U, Stiesch M (2017) Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study. FEMS Microbiol Ecol.  https://doi.org/10.1093/femsec/fix010
  29. 29.
    Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26):3455–3482CrossRefzbMATHGoogle Scholar
  30. 30.
    Rittmann BE, McCarty PL (1980) Model of steady-state- kinetics. Biotechnol Bioeng 22:2343–2357CrossRefGoogle Scholar
  31. 31.
    Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467CrossRefGoogle Scholar
  32. 32.
    Sidoroff F (1974) un modle viscolastique non linaire avec configuration intermdiaire. J de Mec 13:679–713MathSciNetGoogle Scholar
  33. 33.
    Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173CrossRefzbMATHGoogle Scholar
  34. 34.
    Soleimani M, Wriggers P (2016) Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58(4):619–633MathSciNetCrossRefGoogle Scholar
  35. 35.
    Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3):348–354CrossRefGoogle Scholar
  36. 36.
    Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6):528–35CrossRefGoogle Scholar
  37. 37.
    Trejo M, Douarche C, Bailleux V, Poulard C, Mariot S, Regeard C, Raspaud E (2013) Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc Natl Acad Sci 110:2011–2016CrossRefGoogle Scholar
  38. 38.
    Verner SN, Garikipati K (2018) A computational study of the mechanisms of growth-driven folding patterns on shells, with application to the developing brain. Extreme Mech Lett 18:58–69CrossRefGoogle Scholar
  39. 39.
    Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth: model and numerical method. J Theor Biol 253(3):524–543MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Continuum MechanicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations