Computational Mechanics

, Volume 64, Issue 4, pp 1177–1197 | Cite as

Algorithmic aspects and finite element solutions for advanced phase field approach to martensitic phase transformation under large strains

  • Hamed Babaei
  • Anup Basak
  • Valery I. LevitasEmail author
Original Paper


A new problem formulation and numerical algorithm for an advanced phase-field approach (PFA) to martensitic phase transformation (PT) are presented. Finite elastic and transformational strains are considered using a fully geometrically-nonlinear formulation, which includes different anisotropic elastic properties of phases. The requirements for the thermodynamic potentials and transformation deformation gradient tensor are advanced to reproduce crystal lattice instability conditions under a general stress tensor obtained by molecular dynamics (MD) simulations. The PFA parameters are calibrated, in particular, based on the results of MD simulations for PTs between semiconducting Si I and metallic Si II phases under complex action of all six components of the stress tensor (Levitas et al. in Phys Rev Lett 118:025701, 2017a; Phys Rev B 96:054118, 2017b). The independence of the PFA instability conditions of the prescribed stress measure is demonstrated numerically for the initiation of the PT. However, it is observed that the PT cannot be completed unless the stress exceeds the stress peak points that depend on which stress measure is prescribed. Various 3D problems on lattice instability and following nanostructure evolution in single-crystal Si are solved. The effect of stress hysteresis on the nanostructure evolution is studied through analysis of the local driving force and stress fields. It is demonstrated that variation of internal stress fields due to differing boundary conditions may lead to completely different PT mechanisms.


Phase-field approach Martensitic phase transformation Lattice instability condition Nanostructure 



The support of NSF (CMMI-1536925), ARO (W911NF-17-1-0225), ONR (N00014-16-1-2079), and Iowa State University (Vance Coffman Faculty Chair Professorship) are gratefully acknowledged. The simulations were performed at Extreme Science and Engineering Discovery Environment (XSEDE), allocations TG-MSS140033 and MSS170015.


  1. 1.
    Artemev A, Jin YM, Khachaturyan AG (2001) Three-dimensional phase field model of proper martensitic transformation. Acta Mater 49:1165–1177CrossRefGoogle Scholar
  2. 2.
    Babaei H, Levitas VI (2018) Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2: simulations for phase transformations Si I\(\leftrightarrow \)Si II. Int J Plast 107:223–245CrossRefGoogle Scholar
  3. 3.
    Bangerth W, Hartmann R, Kanschat G (2007) Deal. II—a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):1–27MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barsch GR, Krumhansl JA (1984) Twin boundaries in ferroelastic media without interface dislocations. Phys Rev Lett 53:1069–1072CrossRefGoogle Scholar
  5. 5.
    Blank VD, Estrin EI (2014) Phase transitions in solids under high pressure. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140CrossRefGoogle Scholar
  7. 7.
    Falk F (1983) Ginzburg–Landau theory of static domain walls in shape-memory alloys. Z Physik B Condens Matter 51:177–185CrossRefGoogle Scholar
  8. 8.
    Finel A, Le Bouar Y, Gaubert A, Salman U (2010) Phase field methods: microstructures, mechanical properties, and complexity. C R Phys 11:245–256CrossRefGoogle Scholar
  9. 9.
    Domnich V, Gogotsi Y (2004) Indentation-induce phase transformations in ceramics. In: Gogotsi Y, Domnich V (eds) High pressure surface science and engineering. Institute of Physics, Bristol and Philadelphia, pp 443–466Google Scholar
  10. 10.
    He Y, Zhong L, Fan F, Wang C, Zhu T, Mao SX (2016) In situ observation of shear-driven amorphization in silicon crystals. Nat Nanotechnol 11(10):866CrossRefGoogle Scholar
  11. 11.
    Hennig RG, Wadehra A, Driver KP, Parker WD, Umrigar CJ, Wilkins JW (2010) Phase transformation in Si from semiconducting diamond to metallic beta-Sn phase in QMC and DFT under hydrostatic and anisotropic stress. Phys Rev B 82:014101CrossRefGoogle Scholar
  12. 12.
    Hill R, Milstein F (1977) Principles of stability analysis of ideal crystals. Phys Rev B 15:3087–3096CrossRefGoogle Scholar
  13. 13.
    Hornbogen E (1998) Legierungen mit Formgedächtnis. Rheinisch–Westfälische Akademie der Wissenschaften, Vorträge 388Google Scholar
  14. 14.
    Jacobs AE (1992) Finite-strain solitons of a ferroelastic transformation in two dimensions. Phys Rev B 46:8080–8088CrossRefGoogle Scholar
  15. 15.
    Javanbakht M, Levitas VI (2016) Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys Rev B 94:214104CrossRefGoogle Scholar
  16. 16.
    Javanbakht M, Levitas VI (2018) Nanoscale mechanisms for high-pressure mechanochemistry: a phase field study. J Mater Sci 53:13343–13363CrossRefGoogle Scholar
  17. 17.
    Ji C, Levitas VI, Zhu H, Chaudhuri J, Marathe A, Ma Y (2012) Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure. Proc Natl Acad Sci USA 109:19108–19112CrossRefGoogle Scholar
  18. 18.
    Jin YM, Artemev A, Khachaturyan AG (2001a) Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of \(\zeta _2\) martensite in AuCd alloys. Acta Mater 49:2309–2320CrossRefGoogle Scholar
  19. 19.
    Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden-Day Inc, TorontozbMATHGoogle Scholar
  20. 20.
    Levitas VI (2004) Continuum mechanical fundamentals of mechanochemistry. In: Gogotsi Y, Domnich V (eds) High pressure surface science and engineering. Institute of Physics, Bristol, pp 159–292 (Section 3)Google Scholar
  21. 21.
    Levitas VI (2004a) High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys Rev B 70:184118CrossRefGoogle Scholar
  22. 22.
    Levitas VI (2013) Phase-field theory for martensitic phase transformations at large strains. Int J Plast 49:85–118CrossRefGoogle Scholar
  23. 23.
    Levitas VI (2013b) Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater 61:4305–4319CrossRefGoogle Scholar
  24. 24.
    Levitas VI (2013c) Interface stress for nonequilibrium microstructures in the phase field approach: exact analytical results. Phys Rev B 87:054112CrossRefGoogle Scholar
  25. 25.
    Levitas VI (2014) Unambiguous Gibbs dividing surface for nonequilibrium finite-width interface: static equivalence approach. Phys Rev B 89:094107CrossRefGoogle Scholar
  26. 26.
    Levitas VI (2014a) Phase field approach to martensitic phase transformations with large strains and interface stresses. J Mech Phys Solids 70(2014):154–189MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Levitas VI (2018) Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part I. General theory. Int J Plast 106:164–185CrossRefGoogle Scholar
  28. 28.
    Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105:165701CrossRefGoogle Scholar
  29. 29.
    Levitas VI, Javanbakht M (2014) Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms. Nanoscale 6:162–166CrossRefGoogle Scholar
  30. 30.
    Levitas VI, Preston DL (2002a) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite \(\leftrightarrow \) Martensite. Phys Rev B 66:134206CrossRefGoogle Scholar
  31. 31.
    Levitas VI, Preston DL (2002b) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress-space analysis. Phys Rev B 66:134207CrossRefGoogle Scholar
  32. 32.
    Levitas VI, Shvedov LK (2002) Low pressure phase transformation from rhombohedral to cubic BN: experiemnt and theory. Phys Rev B 65(10):104109(1–6)CrossRefGoogle Scholar
  33. 33.
    Levitas VI, Warren JA (2016) Phase field approach with anisotropic interface energy and interface stresses: large strain formulation. J Mech Phys Solids 91:94–125MathSciNetCrossRefGoogle Scholar
  34. 34.
    Levitas VI, Preston DL, Lee DW (2003) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys Rev B 68:134201CrossRefGoogle Scholar
  35. 35.
    Levitas VI, Levin VA, Zingerman KM, Freiman EI (2009) Displacive phase transitions at large strains: phase-field theory and simulations. Phys Rev Lett 103:025702CrossRefGoogle Scholar
  36. 36.
    Levitas VI, Chen H, Xiong L (2017a) Triaxial-stress-induced homogeneous hysteresis-free first-order phase transformations with stable intermediate phases. Phys Rev Lett 118:025701CrossRefGoogle Scholar
  37. 37.
    Levitas VI, Chen H, Xiong L (2017b) Lattice instability during phase transformations under multiaxial stress: modified transformation work criterion. Phys Rev B 96:054118CrossRefGoogle Scholar
  38. 38.
    Mamivand M, Zaeem MA, el Kadiri H (2013) A review on phase field modeling of martensitic phase transformation. Comput Mater Sci 77:304–311CrossRefGoogle Scholar
  39. 39.
    Milstein F, Marschall J, Fang H (1995) Theoretical bcc–fcc transitions in metals via bifurcations under uniaxial load. Phys Rev Lett 74:2977–2980CrossRefGoogle Scholar
  40. 40.
    Olson GB, Cohen M (1972) A mechanism for the strain-induced nucleation of martensitic transformation. J Less Common Met 28:107CrossRefGoogle Scholar
  41. 41.
    Olson GB, Cohen M (1986) Dislocation theory of martensitic transformations. In: Nabarro FRN (ed) Dislocations in solids, vol 7. Elsevier Science Publishers B V, New York, pp 297–407Google Scholar
  42. 42.
    Olson GB, Roytburd AL (1995) Martensitic nucleation. In: Olson GB, Owen WS (eds) Martensite, Ch 9. The Materials Information Society, Russell Township, pp 149–174Google Scholar
  43. 43.
    Patten J (2004) Ductile regime machining of semiconductors and ceramics. In: Gogotsi Y, Domnich V (eds) High pressure surface science and engineering. Institute of Physics, Bristol and Philadelphia, p 543632Google Scholar
  44. 44.
    Vedantam S, Abeyaratne R (2005) A Helmholtz free-energy function for a Cu–Al–Ni shape memory alloy. Int J Non-Linear Mech 40:177–193CrossRefzbMATHGoogle Scholar
  45. 45.
    Wang Y, Khachaturyan AG (2006) Multi-scale phase field approach to martensitic transformations. Mater Sci Eng A 438:55–63CrossRefGoogle Scholar
  46. 46.
    Wang J, Yip S, Phillpot SR, Wolf D (1993) Crystal instabilities at finite strain. Phys Rev Lett 71:4182–4185CrossRefGoogle Scholar
  47. 47.
    Wasmer K, Wermelinger T, Bidiville A, Spolenak R, Michler J (2008) In situ compression tests on micron-sized silicon pillars by Raman microscopy Stress measurements and deformation analysis. J Mater Res 23(11):3040–3047CrossRefGoogle Scholar
  48. 48.
    Wriggers P (2008) Nonlinear finite element methods. Springer, HeidelbergzbMATHGoogle Scholar
  49. 49.
    Zarkevich NA, Chen H, Levitas VI, Johnson DD (2018) Lattice instability during solid-solid structural transformations under a general applied stress tensor: example of Si I Si II with metallization. Phys Rev Lett 121(16):165701CrossRefGoogle Scholar
  50. 50.
    Zhu J, Wu H, Wang D, Gao Y, Wang H, Hao Y, Yang R, Zhang T, Wang Y (2017) Crystallographic analysis and phase field simulation of transformation plasticity in a multifunctional \( \beta \)-Ti alloy. Int J Plast 89:110–129CrossRefGoogle Scholar
  51. 51.
    Zienkiewicz OC, Taylor RL (2000) The finite element method: volume 2- solid mechanics. Butterworth-Heinemann, WoburnzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIowa State UniversityAmesUSA
  2. 2.Departments of Aerospace Engineering, Mechanical Engineering, and Material Science & EngineeringIowa State UniversityAmesUSA

Personalised recommendations