Advertisement

Computational Mechanics

, Volume 64, Issue 4, pp 1155–1175 | Cite as

A finite element formulation for a geometrically exact Kirchhoff–Love beam based on constrained translation

  • Matthias Schulz
  • Markus BölEmail author
Original Paper
  • 166 Downloads

Abstract

In this contribution, a new finite-element formulation of a geometrically exact Kirchhoff–Love beam, which requires \({\hbox {C}}^0\)-continuity and is capable of handling large-deformation problems that involve initially curved structures with arbitrary cross-sections, is presented. The absence of shear deformation that characterizes the Kirchhoff–Love beam is enforced by restricting the translation of the centerline to an axial displacement. Consequently, the configuration space has one translational and three rotational degrees of freedom everywhere along the beam, except for an arbitrary material point on the centerline whose position in space is defined by a total of 6 degrees of freedom. In addition, two different orthogonal transformation interpolation strategies are introduced and implemented. One of the interpolation schemes results in a novel mixed two-field variational principle, where the rotations and the axial strain are interpolated. In the second approach, the tangent field itself and a local twist parameter are discretized. In appropriate numerical examples, objectivity, path-independence, locking phenomena, error convergence behavior, and general performance of the Kirchhoff–Love beam are investigated and compared to other beam formulations.

Keywords

Geometrically exact beam Kirchhoff–Love beam Kirchhoff rod Finite element implementation Locking-free 

Notes

References

  1. 1.
    Antman SS (1995) Nonlinear problems of elasticity. Springer, BerlinCrossRefzbMATHGoogle Scholar
  2. 2.
    Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32:85–155MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Armero F, Valverde J (2012a) Invariant Hermitian finite elements for thin Kirchhoff rods. I: the linear plane case. Comput Methods Appl Mech Eng 213:427–457MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Armero F, Valverde J (2012b) Invariant Hermitian finite elements for thin Kirchhoff rods. II: the linear three-dimensional case. Comput Methods Appl Mech Eng 213:458–485MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arnold M, Cardona A, Brüls O (2016) A Lie algebra approach to Lie group time integration of constrained systems. In: Betsch P (ed) CISM international centre for mechanical sciences—courses and lectures 565, structure-preserving integrators in nonlinear structural dynamicsand flexible multibody dynamics. Springer, pp 91–158Google Scholar
  6. 6.
    Arvin H, Lacarbonara W (2014) A fully nonlinear dynamic formulation for rotating composite beams: Nonlinear normal modes in flapping. Compos Struct 109:93–105CrossRefGoogle Scholar
  7. 7.
    Bathe K-J, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986CrossRefzbMATHGoogle Scholar
  8. 8.
    Battini J-M, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech Eng 191:1755–1789CrossRefzbMATHGoogle Scholar
  9. 9.
    Bauer AM, Breitenberger M, Philipp B, Wüchner R, Bletzinger K-U (2016) Nonlinear isogeometric spatial Bernoulli beam. Comput Methods Appl Mech Eng 303:101–127MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Belytschko T, Hsieh BJ (1973) Non-linear transient finite element analysis with convected co-ordinates. Int J Numer Methods Eng 7:255–271CrossRefzbMATHGoogle Scholar
  11. 11.
    Belytschko T, Glaum LW (1979) Applications of higher order corotational stretch theories to nonlinear finite element analysis. Comput Struct 10:175–182CrossRefzbMATHGoogle Scholar
  12. 12.
    Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Methods Eng 54:1775–1788MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Borri M, Ghiringhelli GL, Merlini T (1992) Linear analysis of naturally curved and twisted anisotropic beams. Compos Eng 2:433–456CrossRefGoogle Scholar
  14. 14.
    Boyer F, Primault D (2004) Finite element of slender beams in finite transformations: a geometrically exact approach. Int J Numer Methods Eng 59:669–702MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Brüls O, Cardona A, Arnold M (2012) Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech Mach Theory 48:121–137CrossRefGoogle Scholar
  16. 16.
    Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438CrossRefzbMATHGoogle Scholar
  17. 17.
    Castillo E, Lozano-Galant JA, Nogal M, Turmo J (2015) New tool to help decision making in civil engineering. J Civ Eng Manag 21:689–697CrossRefGoogle Scholar
  18. 18.
    Češarek P, Saje M, Zupan D (2012) Kinematically exact curved and twisted strain-based beam. Int J Solids Struct 49:1802–1817CrossRefGoogle Scholar
  19. 19.
    Crisfield MA (1990) A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Methods Appl Mech Eng 81:131–150CrossRefzbMATHGoogle Scholar
  20. 20.
    Crisfield MA (1997) Non-linear finite element analysis of solids and structures. Volume 2: advanced topics. Wiley, HobokenzbMATHGoogle Scholar
  21. 21.
    Crisfield MA, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc Lond A Math Phys Eng Sci 455:1125–1147MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Crivelli LA, Felippa CA (1993) A three-dimensional non-linear Timoshenko beam based on the core-congruential formulation. Int J Numer Methods Eng 36:3647–3673CrossRefzbMATHGoogle Scholar
  23. 23.
    Cyron CJ, Wall WA (2010) Consistent finite-element approach to Brownian polymer dynamics with anisotropic friction. Phys Rev E 82:066705CrossRefGoogle Scholar
  24. 24.
    de Borst R, Crisfield MA, Remmers JJC, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, HobokenCrossRefzbMATHGoogle Scholar
  25. 25.
    Drozdov AD, Rabin Y (2000) Elasticity of thin rods with spontaneous curvature and torsion-beyond geometrical lines. arXiv preprint. arXiv:cond-mat/0002004
  26. 26.
    Durville D (2010) Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 3:1241–1251CrossRefGoogle Scholar
  27. 27.
    Dvorkin EN, Onte E, Oliver J (1988) On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Methods Eng 26:1597–1613CrossRefzbMATHGoogle Scholar
  28. 28.
    Freund J, Karakoç A (2016) Warping displacement of Timoshenko beam model. Int J Solids Struct 92:9–16CrossRefGoogle Scholar
  29. 29.
    Frischkorn J, Reese S (2013) A solid-beam finite element and non-linear constitutive modeling. Comput Methods Appl Mech Eng 265:195–212CrossRefzbMATHGoogle Scholar
  30. 30.
    Gadot B, Martinez OR, du Roscoat SR, Bouvard D, Rodney D, Orgéas L (2015) Entangled single-wire NiTi material: a porous metal with tunable superelastic and shape memory properties. Acta Mater 96:311–323CrossRefGoogle Scholar
  31. 31.
    Ghosh S, Roy D (2008) Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Comput Methods Appl Mech Eng 198:555–571MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ghosh S, Roy D (2009) A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput Mech 44:103–118CrossRefzbMATHGoogle Scholar
  33. 33.
    Giavotto V, Borri M, Mantegazza P, Ghiringhelli G, Carmaschi V, Maffioli GC, Mussi F (1983) Anisotropic beam theory and applications. Comput Struct 16:403–413CrossRefzbMATHGoogle Scholar
  34. 34.
    Greco L, Cuomo M (2013) B-Spline interpolation of Kirchhoff-Love space rods. Comput Methods Appl Mech Eng 256:251–269MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Greco L, Cuomo M (2016) An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput Methods Appl Mech Eng 298:325–349CrossRefzbMATHGoogle Scholar
  36. 36.
    Han SL, Bauchau OA (2017) Nonlinear, three-dimensional beam theory for dynamic analysis. Multibody Syst Dyn 41:173–200MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hao W, Ge D, Ma Y, Yao X, Shi Y (2012) Experimental investigation on deformation and strength of carbon/epoxy laminated curved beams. Polym Test 31:520–526CrossRefGoogle Scholar
  38. 38.
    Hegemier GA, Nair S (1977) A nonlinear dynamical theory for heterogeneous, anisotropic, elasticrods. AIAA J 15:8–15CrossRefzbMATHGoogle Scholar
  39. 39.
    Hellinger E (1913) Die allgemeinen Ansätze der Mechanik der Kontinua. Encyklopädie der Mathematischen Wissenschaften IV 4(5):119–140zbMATHGoogle Scholar
  40. 40.
    Hjelmstad K D (2007) Fundamentals of structural mechanics. Springer, BerlinGoogle Scholar
  41. 41.
    Hodges DH (1990) A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct 26:1253–1273MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hodges DH (2003) Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA J 41:1131–1137CrossRefGoogle Scholar
  43. 43.
    Hodges DH (2009) Erratum: Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA J 47:1308–1309CrossRefGoogle Scholar
  44. 44.
    Holzapfel GA, Ogden RW (2011) On the bending and stretching elasticity of biopolymer filaments. J Elast 104:319–342MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Hu H (1955) On some variational methods on the theory of elasticity and the theory of plasticity. Sci Sin 4:33–54zbMATHGoogle Scholar
  46. 46.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Downers GrovezbMATHGoogle Scholar
  47. 47.
    Ibrahimbegović A, Frey F, Kožar I (1995) Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng 38:3653–3673MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26CrossRefzbMATHGoogle Scholar
  49. 49.
    Ibrahimbegović A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech Eng 149:49–71MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Iura M, Atluri SN (1988) Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams. Comput Struct 29:875–889CrossRefzbMATHGoogle Scholar
  51. 51.
    Iura M, Atluri S (1989) On a consistent theory and variational formulation of finitely stretched and rotated 3-D space-curved beams. Comput Mech 4:73–88CrossRefzbMATHGoogle Scholar
  52. 52.
    Jafari M, Mahjoob MJ (2010) An exact three-dimensional beam element with nonuniform cross section. J Appl Mech 77:061009CrossRefGoogle Scholar
  53. 53.
    Jelenić G, Saje M (1995) A kinematically exact space finite strain beam model - finite element formulation by generalized virtual work principle. Comput Methods Appl Mech Eng 120:131–161MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Jelenić G, Crisfield MA (1998) Interpolation of rotational variables in nonlinear dynamics of 3D beams. Int J Numer Methods Eng 43:1193–1222MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Jelenić G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Kabla A, Mahadevan L (2007) Nonlinear mechanics of soft fibrous networks. J R Soc Interface 4:99–106CrossRefGoogle Scholar
  57. 57.
    Kirchhoff G (1859) Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. Journal für die reine und angewandte Mathematik 56:285–313MathSciNetGoogle Scholar
  58. 58.
    Kondoh K, Tanaka K, Atluri SN (1986) An explicit expression for the tangent-stiffness of a finitely deformed 3-D beam and its use in the analysis of space frames. Comput Struct 24:253–271CrossRefzbMATHGoogle Scholar
  59. 59.
    Kulachenko A, Denoyelle T, Galland S, Lindström SB (2012) Elastic properties of cellulose nanopaper. Cellulose 19:793–807CrossRefGoogle Scholar
  60. 60.
    Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover, Downers GrovezbMATHGoogle Scholar
  61. 61.
    Manta D, Gonçalves R (2016) A geometrically exact Kirchhoff beam model including torsion warping. Comput Struct 177:192–203CrossRefGoogle Scholar
  62. 62.
    Mata P, Oller S, Barbat AH (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196:4458–4478MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Meier C, Popp A, Wall WA (2014) An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput Methods Appl Mech Eng 278:445–478MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Meier C, Popp A, Wall WA (2015) A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Comput Methods Appl Mech Eng 290:314–341MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Meier C, Popp A, Wall WA (2016) Geometrically exact finite element formulations for curved slender beams: Kirchhoff-Love theory vs. Simo-Reissner theory. arXiv:1609.00119
  66. 66.
    Müller KW, Meier C, Wall WA (2015) Resolution of sub-element length scales in Brownian dynamics simulations of biopolymer networks with geometrically exact beam finite elements. J Comput Phys 303:185–202MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Nachbagauer K, Pechstein AS, Irschik H, Gerstmayr J (2011) A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst Dyn 26:245–263CrossRefzbMATHGoogle Scholar
  68. 68.
    Nukala P, White D (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Methods Appl Mech Eng 193:2507–2545CrossRefzbMATHGoogle Scholar
  69. 69.
    Pai PF, Nayfeh AH (1994) A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects. Int J Solids Struct 31:1309–1340CrossRefzbMATHGoogle Scholar
  70. 70.
    Park MS, Lee BC (1996) Geometrically non-linear and elastoplastic three-dimensional shear flexible beam element of von-Mises-type hardening material. Int J Numer Methods Eng 39:383–408CrossRefzbMATHGoogle Scholar
  71. 71.
    Petrov E, Géradin M (1998) Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids part 1: beam concept and geometrically exact nonlinear formulation. Comput Methods Appl Mech Eng 165:43–92CrossRefzbMATHGoogle Scholar
  72. 72.
    Pimenta P, Yojo T (1993) Geometrically exact analysis of spatial frames. Appl Mech Rev 46:S118–S128CrossRefGoogle Scholar
  73. 73.
    Pimenta S, Campello EMB (2003) A fully nonlinear multi-parameter rod model incorporating general cross-sectional in-plane changes and out-of-plane warping. Latin Am J Solids Struct 92:119–140Google Scholar
  74. 74.
    Reissner E (1950) On a variational theorem in elasticity. J Math Phys 29:90–95MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 23:795–804CrossRefzbMATHGoogle Scholar
  76. 76.
    Reissner E (1981) On finite deformations of space-curved beams. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 32:734–744CrossRefzbMATHGoogle Scholar
  77. 77.
    Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Romero I (2008) A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst Dyn 20:51–68MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Romero I, Armero F (2002) An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Methods Eng 54:1683–1716MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Romero I, Urrecha M, Cyron CJ (2014) A torsion-free non-linear beam model. Int J Non Linear Mech 58:1–10CrossRefGoogle Scholar
  81. 81.
    Rossmann W (2002) Lie groups: an introduction through linear groups. Oxford University Press, OxfordzbMATHGoogle Scholar
  82. 82.
    Sansour C, Sansour J, Wriggers P (1996) A finite element approach to the chaotic motion of geometrically exact rods undergoing in-plane deformations. Nonlinear Dyn 11:189–212MathSciNetCrossRefGoogle Scholar
  83. 83.
    Sansour C, Wagner W (2003) Multiplicative updating of the rotation tensor in the finite element analysis of rods and shells-a path independent approach. Comput Mech 31:153–162MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Santos H, Pimenta PM, De Almeida JPM (2010) Hybrid and multi-field variational principles for geometrically exact three-dimensional beams. Int J Non Linear Mech 45:809–820CrossRefGoogle Scholar
  85. 85.
    Shabana AA (1996) Finite element incremental approach and exact rigid body inertia. J Mech Des 118:171–178CrossRefGoogle Scholar
  86. 86.
    Simo J C (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49:55–70CrossRefzbMATHGoogle Scholar
  87. 87.
    Simo J C, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput Methods Appl Mech Eng 58:79–116CrossRefzbMATHGoogle Scholar
  88. 88.
    Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66:125–161MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Simo JC, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27:371–393MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Sopanen JT, Mikkola AM (2003) Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn 34:53–74CrossRefzbMATHGoogle Scholar
  91. 91.
    Sotoudeh Z, Hodges DH (2011) Modeling beams with various boundary conditions using fully intrinsic equations. J Appl Mech 78:0310101CrossRefGoogle Scholar
  92. 92.
    Strang G, Fix G (2008) An analysis of the finite elment method. Wellesley-Cambrigde Press, WellesleyzbMATHGoogle Scholar
  93. 93.
    Wackerfuß J, Gruttmann F (2009) A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models. Comput Methods Appl Mech Eng 198:2053–2066MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Washizu K (1955) On the variational principles of elasticity and plasticity. Technical Report 25-18, Aeroelastic and Structures Research Laboratory, MIT, CambridgeGoogle Scholar
  95. 95.
    Weiss H (2002) Dynamics of geometrically nonlinear rods: I. Mechanical models and equations of motion. Nonlinear Dyn 30:357–381MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Weiss H (2002) Dynamics of geometrically nonlinear rods: II. Numerical methods and computational examples. Nonlinear Dyn 30:383–415MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    Wempner G (1969) Finite elements, finite rotations and small strains of flexible shells. Int J Solids Struct 5:117–153CrossRefzbMATHGoogle Scholar
  98. 98.
    Yang Y, Tobias I, Olson WK (1993) Finite element analysis of DNA supercoiling. J Chem Phys 98:1673–1686CrossRefGoogle Scholar
  99. 99.
    Yang Y-B, Yau J-D (1997) Vehicle-bridge interaction element for dynamic analysis. J Struct Eng 123:1512–1518CrossRefGoogle Scholar
  100. 100.
    Zhang Z, Qi Z, Wu Z, Fang H (2015) A spatial Euler-Bernoulli beam element for rigid-flexible coupling dynamic analysis of flexible structures. Shock and Vibration 2015:1–15Google Scholar
  101. 101.
    Zhao Z, Ren G (2012) A quaternion-based formulation of Euler-Bernoulli beam without singularity. Nonlinear Dyn 67:1825–1835MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Zupan D, Saje M (2003) Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput Methods Appl Mech Eng 192:5209–5248MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Zupan D, Saje M (2006) The linearized three-dimensional beam theory of naturally curved and twisted beams: the strain vectors formulation. Comput Methods Appl Mech Eng 195:4557–4578CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Solid MechanicsTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations