Computational Mechanics

, Volume 64, Issue 4, pp 1049–1071 | Cite as

An integrated approach for the conformal discretization of complex inclusion-based microstructures

  • Karim Ehab Moustafa Kamel
  • Bernard Sonon
  • Thierry Jacques MassartEmail author
Original Paper


Computational homogenization techniques nowadays are extensively used to gain a better understanding of the links between complex microstructural features in materials and their corresponding (evolving) macroscopic properties. This requires robust tools to discretize complex microstructural geometries and enable simulations. To achieve this, the present contribution presents an integrated approach for the conformal discretization of complex inclusion-based RVE geometries defined implicitly based on experimental techniques or through computational RVE generation methodologies. The conforming mesh generator extends the Persson–Strang truss analogy in order to deal with complex periodic heterogeneous RVEs. Such an approach, based on signed distance fields, carries the advantage that the level set information maintained in previously presented RVE generation methodologies (Sonon et al. in Comput Methods Appl Mech Eng 223:103–122, 2012. can seamlessly be used in the discretization procedure. This provides a natural link between the RVE geometry generation and the mesh generator to obtain high quality optimized FEM meshes exploitable in regular codes and softwares.


Conforming meshes Implicit geometries Heterogeneous materials Multi-scale analysis Mesh Optimization FEM 



The first author acknowledges the support of FRIA under Grant No. 29340757.


  1. 1.
    Selvadurai APS, Gowacki A (2008) Permeability hysterisis of limestone during isotropic compression. Ground Water 46(1):113119. Google Scholar
  2. 2.
    Hemes S, Desbois G, Urai JL, Schrppel B, Schwarz JO (2015) Multi-scale characterization of porosity in boom clay (HADES-level, Mol, Belgium) using a combination of X-ray, \(\mu \)-ct, 2D BIB-SEM and FIB-SEM tomography. Microporous Mesoporous Mater 208:1–20. Google Scholar
  3. 3.
    Song Y, Davy C, Troadec D, Blanchenet AM, Skoczylas F, Talandier J, Robinet J (2015) Multi-scale pore structure of cox claystone: towards the prediction of fluid transport. Marine Petrol Geol 65:63–82. Google Scholar
  4. 4.
    Kouznetsova V, Geers MG, Brekelmans WM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260zbMATHGoogle Scholar
  5. 5.
    Massart TJ, Selvadurai APS (2014) Computational modelling of crack-induced permeability evolution in granite with dilatant cracks. Int J Rock Mech Min Sci 70:593–604. Google Scholar
  6. 6.
    Masson R, Bornert M, Suquet P, Zaoui A (2000) An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J Mech Phys Solids 48(6):1203–1227. MathSciNetzbMATHGoogle Scholar
  7. 7.
    Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Notes in Physics. Springer, Berlin.
  8. 8.
    Sun WC, Andrade JE, Rudnicki JW (2011) Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability. Int J Numer Methods Eng 88(12):1260–1279. MathSciNetzbMATHGoogle Scholar
  9. 9.
    der Sluis O, Vosbeek P, Schreurs P, Jer H (1999) Homogenization of heterogeneous polymers. Int J Solids Struct 36(21):3193–3214. MathSciNetzbMATHGoogle Scholar
  10. 10.
    Stroeven M, Askes H, Sluys L (2004) Numerical determination of representative volumes for granular materials. Comput Methods Appl Mech Eng 193(30):3221–3238. zbMATHGoogle Scholar
  11. 11.
    Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37(16):2285–2311. zbMATHGoogle Scholar
  12. 12.
    Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48. zbMATHGoogle Scholar
  13. 13.
    Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260. zbMATHGoogle Scholar
  14. 14.
    Roubin E, Colliat JB, Benkemoun N (2015) Meso-scale modeling of concrete: a morphological description based on excursion sets of random fields. Comput Mater Sci 102:183–195. Google Scholar
  15. 15.
    Sonon B, François B, Massart TJ (2012) A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs. Comput Methods Appl Mech Eng 223:103–122. Google Scholar
  16. 16.
    Legrain G, Cartraud P, Perreard I, Mos N (2011) An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915–934. zbMATHGoogle Scholar
  17. 17.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150.<131::AID-NME726>3.0.CO;2-J
  18. 18.
    Sukumar N, Chopp D, Moës N, Belytschko” T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46–47):6183–6200. MathSciNetzbMATHGoogle Scholar
  19. 19.
    Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. MathSciNetzbMATHGoogle Scholar
  20. 20.
    Si H (2015) Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw 41(2):11:1–11:36. MathSciNetzbMATHGoogle Scholar
  21. 21.
    TetMesh GHS3D: a powerful isotropic tet-mesher, version 4.2 (2010). URL ghs3d/ghs.php
  22. 22.
    Schöberl J (1997) Netgen an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52. zbMATHGoogle Scholar
  23. 23.
    George PL (1997) Improvements on delaunay-based three-dimensional automatic mesh generator. Finite Elem Anal Des 25(3):297–317. MathSciNetzbMATHGoogle Scholar
  24. 24.
    George PL, Borouchaki H (1998) Delaunay triangulation and meshing. Hermès, PariszbMATHGoogle Scholar
  25. 25.
    Shewchuk JR (2012) Lecture notes on delaunay mesh generation. Department of Electrical Engineering and Computer Sciences, University of California, OaklandGoogle Scholar
  26. 26.
    Frey P, George P (2000) Mesh generation: application to finite elements. Hermes Science.
  27. 27.
    Boyd SK, Mller R (2006) Smooth surface meshing for automated finite element model generation from 3D image data. J Biomech 39(7):1287–1295. Google Scholar
  28. 28.
    Klaas O, Beall MW, Shephard MS (2013) Construction of models and meshes of heterogeneous material microstructures from image data. Springer, Dordrecht, pp 171–193. Google Scholar
  29. 29.
    Potter E, Pinho S, Robinson P, Iannucci L, McMillan A (2012) Mesh generation and geometrical modelling of 3D woven composites with variable tow cross-sections. Comput Mater Sci 51(1):103–111. Google Scholar
  30. 30.
    Hormann K (2003) From scattered samples to smooth surfaces. In: Proceedings of geometric modeling and computer graphics (2003)Google Scholar
  31. 31.
    Zhang Y, Bajaj C, Sohn B (2005) 3D finite element meshing from imaging data. Comput Methods Appl Mech Eng 194(48–49):5083–5106. zbMATHGoogle Scholar
  32. 32.
    Zhang Y, Hughes TJ, Bajaj CL (2010) An automatic 3D mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng 199(5):405–415. zbMATHGoogle Scholar
  33. 33.
    Drach A, Drach B, Tsukrov I (2014) Processing of fiber architecture data for finite element modeling of 3D woven composites. (Special Issue dedicated to Professor Zdenk Bittnar on the occasion of his Seventieth Birthday: Part 2). Adva Eng Softw 72:18–27. Google Scholar
  34. 34.
    Fritzen F, Bhlke T (2011) Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. Int J Solids Struct 48(5):706–718. zbMATHGoogle Scholar
  35. 35.
    Grail G, Hirsekorn M, Wendling A, Hivet G, Hambli R (2013) Consistent finite element mesh generation for meso-scale modeling of textile composites with preformed and compacted reinforcements. Compos Part A Appl Sci Manuf 55:143–151. Google Scholar
  36. 36.
    Legrain G, Allais R, Cartraud P (2011) On the use of the extended finite element method with quadtree/octree meshes. Int J Numer Methods Eng 86(6):717–743. MathSciNetzbMATHGoogle Scholar
  37. 37.
    Sonon B, François B, Massart TJ (2015) An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comput Mech 56(2):221–242. MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sonon B, Massart TJ (2013) A level-set based representative volume element generator and xfem simulations for textile and 3D-reinforced composites. Materials 6(12):5568–5592. Google Scholar
  39. 39.
    Persson PO, Strang G (2004) A simple mesh generator in matlab. SIAM Rev 46:2004MathSciNetzbMATHGoogle Scholar
  40. 40.
    Goldman R (2005) Curvature formulas for implicit curves and surfaces. Comput Aided Geom Des 22(7):632–658. MathSciNetzbMATHGoogle Scholar
  41. 41.
    Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge.
  42. 42.
    Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences. Springer, New York.
  43. 43.
    Persson PO (2005) Mesh generation for implicit geometries. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA. AAI0807802Google Scholar
  44. 44.
    Lo D (2015) Finite element mesh generation. Taylor & Francis.
  45. 45.
    Field DA (2000) Qualitative measures for initial meshes. Int J Numer Methods Eng 47(4):887–906.<887::AID-NME804>3.0.CO;2-H
  46. 46.
    Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40(21):3979–4002.<3979::AID-NME251>3.0.CO;2-9
  47. 47.
    Gargallo-Peiró A, Roca X, Peraire J, Sarrate J (2015) Distortion and quality measures for validating and generating high-order tetrahedral meshes. Eng Comput 31(3):423–437. zbMATHGoogle Scholar
  48. 48.
    Klingner BM, Shewchuk JR (2008) Aggressive tetrahedral mesh improvement. Springer, Berlin, pp 3–23. zbMATHGoogle Scholar
  49. 49.
    Si H, Gärtner K (2010) 3D boundary recovery by constrained delaunay tetrahedralization. Preprint. WIAS.
  50. 50.
    Shewchuk JR (2002) Constrained delaunay tetrahedralizations and provably good boundary recovery. In: Proceedings of the 11th international meshing roundtable, IMR 2002, Ithaca, New York, USA, 15–18 Sept 2002, pp 193–204 (2002).
  51. 51.
    Si H (2010) Constrained delaunay tetrahedral mesh generation and refinement. Finite Elem Anal Des 46(1–2):33–46. MathSciNetGoogle Scholar
  52. 52.
    Rusinkiewicz S (2004) Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of the 3D data processing, visualization, and transmission, 2Nd international symposium, 3DPVT ’04, pp 486–493. IEEE Computer Society, Washington, DC, USA.
  53. 53.
    Macri M, De S (2008) An octree partition of unity method (OctPUM) with enrichments for multiscale modeling of heterogeneous media. Comput Struct 86(7):780–795. Google Scholar
  54. 54.
    Paiva A, Lopes H, Lewiner T, Figueiredo LHD (2006) Robust adaptive meshes for implicit surfaces. In: 2006 19th Brazilian symposium on computer graphics and image processing, pp 205–212.
  55. 55.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21(4):163–169. Google Scholar
  56. 56.
    Field DA (1988) Laplacian smoothing and delaunay triangulations. Commun Appl Numer Methods 4(6):709–712. zbMATHGoogle Scholar
  57. 57.
    Bottasso CL, Detomi D, Serra R (2005) The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes. Comput Methods Appl Mech Eng 194(39):4244–4264. zbMATHGoogle Scholar
  58. 58.
    Lin TJ, Guan ZQ, Chang JH, Lo SH (2014) Vertex-ball spring smoothing: an efficient method for unstructured dynamic hybrid meshes. Comput Struct 136:24–33. Google Scholar
  59. 59.
    Bossen FJ, Heckbert P (1996) A pliant method for anisotropic mesh generation. In: Proceedings of the 5th international meshing roundtable, pp 63–74Google Scholar
  60. 60.
    Koko J (2015) A matlab mesh generator for the two-dimensional finite element method. Appl Math Comput 250:650–664. MathSciNetzbMATHGoogle Scholar
  61. 61.
    Wintiba B, Sonon B, Kamel KEM, Massart TJ (2017) An automated procedure for the generation and conformal discretization of 3D woven composites RVEs. Compos Struct 180(Supplement C):955–971. Google Scholar
  62. 62.
    Hashemi MA, Khaddour G, François B, Massart TJ, Salager S (2014) A tomographic imagery segmentation methodology for three-phase geomaterials based on simultaneous region growing. Acta Geotech 9(5):831–846. Google Scholar
  63. 63.
    Adler RJ (2008) Some new random field tools for spatial analysis. Stoch Environ Res Risk Assess 22(6):809. MathSciNetGoogle Scholar
  64. 64.
    Attene M (2014) Direct repair of self-intersecting meshes. Graph Models 76(6):658–668. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Karim Ehab Moustafa Kamel
    • 1
  • Bernard Sonon
    • 1
  • Thierry Jacques Massart
    • 1
    Email author
  1. 1.BATir, Building, Architecture & Town PlanningUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations