Advertisement

Computational Mechanics

, Volume 64, Issue 4, pp 1017–1048 | Cite as

A stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuities

  • P. Zakian
  • N. KhajiEmail author
Original Paper
  • 76 Downloads

Abstract

This paper proposes a new efficient stochastically adapted spectral finite element method to simulate fault dislocation and its wave propagation consequences. For this purpose, a dynamic form of the split node technique is formulated and developed to stochastic spectral finite element method in order to model fault dislocation happening within a random media without increasing computational demand caused by discontinuities. As discontinuities are not modeled explicitly herein, no additional degrees of freedom are implemented in the proposed method due to the discontinuities, while effects of these discontinuities are preserved. Therefore, the present method simultaneously includes merits of stochastic finite element method, spectral finite element method and the spilt node technique, thereby providing a new numerical tool for analysis of wave propagation under fault dislocation in random media. Several numerical simulations are solved by the proposed method, which present stochastic analysis of fault slip-induced wave propagation in layered random media. Formulations and numerical results demonstrate capability, application and efficiency of this novel method.

Keywords

Dynamic fault dislocation Stochastic spectral finite element method Split node technique Layered random media Karhunen–Loève expansion Polynomial chaos expansion 

Notes

Acknowledgements

The authors are grateful to the Iran National Science Foundation (INSF) for the financial support of their research project.

References

  1. 1.
    Ghanem RG, Spanos PD (2003) Stochastic Finite elements: a spectral approach. Courier Dover Publications, MineolazbMATHGoogle Scholar
  2. 2.
    Kaminski M (2013) The stochastic perturbation method for computational mechanics. Wiley, HobokenCrossRefzbMATHGoogle Scholar
  3. 3.
    Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051.  https://doi.org/10.1016/j.cma.2008.11.007 CrossRefzbMATHGoogle Scholar
  4. 4.
    Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, PrincetonCrossRefzbMATHGoogle Scholar
  5. 5.
    Anders M, Hori M (1999) Stochastic finite element method for elasto-plastic body. Int J Numer Methods Eng 46(11):1897–1916.  https://doi.org/10.1002/(SICI)1097-0207(19991220)46:11%3c1897:AID-NME758%3e3.0.CO;2-3 CrossRefzbMATHGoogle Scholar
  6. 6.
    Kamiński M (2015) On the dual iterative stochastic perturbation-based finite element method in solid mechanics with Gaussian uncertainties. Int J Numer Methods Eng 104(11):1038–1060.  https://doi.org/10.1002/nme.4976 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Papadopoulos V, Kalogeris I (2016) A Galerkin-based formulation of the probability density evolution method for general stochastic finite element systems. Comput Mech 57(5):701–716.  https://doi.org/10.1007/s00466-015-1256-9 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kamiński MM (2009) A generalized stochastic perturbation technique for plasticity problems. Comput Mech 45(4):349.  https://doi.org/10.1007/s00466-009-0455-7 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    van den Ende MPA, Chen J, Ampuero JP, Niemeijer AR (2018) A comparison between rate-and-state friction and microphysical models, based on numerical simulations of fault slip. Tectonophysics 733:273–295.  https://doi.org/10.1016/j.tecto.2017.11.040 CrossRefGoogle Scholar
  10. 10.
    Volterra V Sur l’équilibre des corps élastiques multiplement connexes. In: Annales scientifiques de l’Ecole Normale superieure, 1907. Société mathématique de France, pp 401–517Google Scholar
  11. 11.
    van Zwieten GJ, Hanssen RF, Gutiérrez MA (2013) Overview of a range of solution methods for elastic dislocation problems in geophysics. J Geophys Res Solid Earth 118(4):1721–1732.  https://doi.org/10.1029/2012JB009278 CrossRefGoogle Scholar
  12. 12.
    Melosh HJ, Raefsky A (1983) Anelastic response of the Earth to a dip slip earthquake. J Geophys Res Solid Earth 88(B1):515–526.  https://doi.org/10.1029/JB088iB01p00515 CrossRefGoogle Scholar
  13. 13.
    Melosh HJ, Raefsky A (1981) A simple and efficient method for introducing faults into finite element computations. Bull Seismol Soc Am 71(5):1391–1400Google Scholar
  14. 14.
    Dalguer LA, Day SM (2007) Staggered-grid split-node method for spontaneous rupture simulation. J Geophys Res Solid Earth 112(B2):B02302.  https://doi.org/10.1029/2006JB004467 CrossRefGoogle Scholar
  15. 15.
    Dalguer LA, Day SM (2006) Comparison of fault representation methods in finite difference simulations of dynamic rupture. Bull Seismol Soc Am 96(5):1764–1778.  https://doi.org/10.1785/0120060024 CrossRefGoogle Scholar
  16. 16.
    Andrews DJ (1999) Test of two methods for faulting in finite-difference calculations. Bull Seismol Soc Am 89(4):931–937Google Scholar
  17. 17.
    van Zwieten GJ, van Brummelen EH, van der Zee KG, Gutiérrez MA, Hanssen RF (2014) Discontinuities without discontinuity: the weakly-enforced slip method. Comput Methods Appl Mech Eng 271:144–166.  https://doi.org/10.1016/j.cma.2013.12.004 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Soares D Jr, Mansur WJ (2009) An efficient time-truncated boundary element formulation applied to the solution of the two-dimensional scalar wave equation. Eng Anal Bound Elem 33(1):43–53.  https://doi.org/10.1016/j.enganabound.2008.04.002 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hamzeh Javaran S, Khaji N, Moharrami H (2011) A dual reciprocity BEM approach using new Fourier radial basis functions applied to 2D elastodynamic transient analysis. Eng Anal Bound Elem 35(1):85–95.  https://doi.org/10.1016/j.enganabound.2010.05.014 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Javaran SH, Khaji N, Noorzad A (2010) First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method. Acta Mech 218(3):247–258.  https://doi.org/10.1007/s00707-010-0421-7 zbMATHGoogle Scholar
  21. 21.
    Romero A, Tadeu A, Galvín P, António J (2015) 2.5D coupled BEM–FEM used to model fluid and solid scattering wave. Int J Numer Methods Eng 101(2):148–164.  https://doi.org/10.1002/nme.4801 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shi F, Lowe MJS, Skelton EA, Craster RV (2018) A time-domain finite element boundary integral approach for elastic wave scattering. Comput Mech 61(4):471–483.  https://doi.org/10.1007/s00466-017-1471-7 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Idesman A, Pham D, Foley JR, Schmidt M (2014) Accurate solutions of wave propagation problems under impact loading by the standard, spectral and isogeometric high-order finite elements. Comparative study of accuracy of different space-discretization techniques. Finite Elem Anal Des 88:67–89.  https://doi.org/10.1016/j.finel.2014.05.007 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Noh G, Bathe K-J (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193.  https://doi.org/10.1016/j.compstruc.2013.06.007 CrossRefGoogle Scholar
  25. 25.
    Ham S, Bathe K-J (2012) A finite element method enriched for wave propagation problems. Comput Struct 94–95:1–12.  https://doi.org/10.1016/j.compstruc.2012.01.001 CrossRefGoogle Scholar
  26. 26.
    Kim K-T, Zhang L, Bathe K-J (2018) Transient implicit wave propagation dynamics with overlapping finite elements. Comput Struct 199:18–33.  https://doi.org/10.1016/j.compstruc.2018.01.007 CrossRefGoogle Scholar
  27. 27.
    Żak A, Krawczuk M, Skarbek Ł, Palacz M (2014) Numerical analysis of elastic wave propagation in unbounded structures. Finite Elem Anal Des 90:1–10.  https://doi.org/10.1016/j.finel.2014.06.001 CrossRefGoogle Scholar
  28. 28.
    Song C (2009) The scaled boundary finite element method in structural dynamics. Int J Numer Methods Eng 77(8):1139–1171.  https://doi.org/10.1002/nme.2454 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yang ZJ, Deeks AJ (2006) A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method. Comput Mech 40(4):725–738.  https://doi.org/10.1007/s00466-006-0135-9 CrossRefzbMATHGoogle Scholar
  30. 30.
    Khodakarami MI, Khaji N (2014) Wave propagation in semi-infinite media with topographical irregularities using decoupled equations method. Soil Dyn Earthq Eng 65:102–112.  https://doi.org/10.1016/j.soildyn.2014.06.006 CrossRefGoogle Scholar
  31. 31.
    Khodakarami MI, Khaji N, Ahmadi MT (2012) Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations. Comput Methods Appl Mech Eng 213–216:183–195.  https://doi.org/10.1016/j.cma.2011.11.016 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Toki K, Sawada S, Okashige Y (1987) Simulation of fault rupture process by the stochastic finite element method. Probab Eng Mech 2(3):129–137.  https://doi.org/10.1016/0266-8920(87)90003-8 CrossRefGoogle Scholar
  33. 33.
    Hori M (2011) Introduction to computational earthquake engineering. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  34. 34.
    Hori M, Ichimura T, Nakagawa H (2003) Analysis methods of stochastic model: application to strong motion and fault problems. Struct Eng Earthq Eng 20(2):105s–118sCrossRefGoogle Scholar
  35. 35.
    Giraldo D, Restrepo D (2017) The spectral cell method in nonlinear earthquake modeling. Comput Mech 60(6):883–903.  https://doi.org/10.1007/s00466-017-1454-8 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hainzl S, Zöller G, Brietzke GB, Hinzen K-G (2013) Comparison of deterministic and stochastic earthquake simulators for fault interactions in the Lower Rhine Embayment, Germany. Geophys J Int 195(1):684–694.  https://doi.org/10.1093/gji/ggt271 CrossRefGoogle Scholar
  37. 37.
    Korn M (1993) Seismic waves in random media. J Appl Geophys 29(3–4):247–269.  https://doi.org/10.1016/0926-9851(93)90007-L CrossRefGoogle Scholar
  38. 38.
    Manolis GD, Bagtzoglou AC (1992) A numerical comparative study of wave propagation in inhomogeneous and random media. Comput Mech 10(6):397–413.  https://doi.org/10.1007/BF00363995 CrossRefzbMATHGoogle Scholar
  39. 39.
    Ripperger J, Ampuero JP, Mai PM, Giardini D (2007) Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress. J Geophys Res Solid Earth 112(B4):B04311.  https://doi.org/10.1029/2006JB004515 CrossRefGoogle Scholar
  40. 40.
    Zak A, Krawczuk M, Ostachowicz W (2006) Propagation of in-plane waves in an isotropic panel with a crack. Finite Elem Anal Des 42(11):929–941.  https://doi.org/10.1016/j.finel.2006.01.013 CrossRefGoogle Scholar
  41. 41.
    Ham S, Lai B, Bathe K-J (2014) The method of finite spheres for wave propagation problems. Comput Struct 142:1–14.  https://doi.org/10.1016/j.compstruc.2014.05.012 CrossRefGoogle Scholar
  42. 42.
    Noh G, Ham S, Bathe K-J (2013) Performance of an implicit time integration scheme in the analysis of wave propagations. Comput Struct 123:93–105.  https://doi.org/10.1016/j.compstruc.2013.02.006 CrossRefGoogle Scholar
  43. 43.
    Igel H, Käser M, Stupazzini M (2014) Simulation of seismic wave propagation in media with complex geometries. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 1–32.  https://doi.org/10.1007/978-3-642-27737-5_468-2 Google Scholar
  44. 44.
    Sawada M, Haba K, Hori M (2018) Estimation of surface fault displacement by high performance computing. J Earthq Tsunami (article in press) Google Scholar
  45. 45.
    Hennings B, Lammering R, Gabbert U (2013) Numerical simulation of wave propagation using spectral finite elements. CEAS Aeronaut J 4(1):3–10.  https://doi.org/10.1007/s13272-012-0053-9 CrossRefGoogle Scholar
  46. 46.
    Kudela P, Krawczuk M, Ostachowicz W (2007) Wave propagation modelling in 1D structures using spectral finite elements. J Sound Vib 300(1–2):88–100.  https://doi.org/10.1016/j.jsv.2006.07.031 CrossRefzbMATHGoogle Scholar
  47. 47.
    Priolo E, Carcione JM, Seriani G (1994) Numerical simulation of interface waves by high-order spectral modeling techniques. J Acoust Soc Am 95(2):681–693CrossRefGoogle Scholar
  48. 48.
    Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31–41.  https://doi.org/10.1016/j.finel.2012.02.001 CrossRefGoogle Scholar
  49. 49.
    Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139(3):806–822.  https://doi.org/10.1046/j.1365-246x.1999.00967.x CrossRefGoogle Scholar
  50. 50.
    Zakian P, Khaji N (2016) A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica 51(4):893–920.  https://doi.org/10.1007/s11012-015-0242-9 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Khaji N, Zakian P (2017) Uncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element method. Mech Adv Mater Struct 24(12):1030–1042.  https://doi.org/10.1080/15376494.2016.1202359 CrossRefGoogle Scholar
  52. 52.
    Haskell NA (1969) Elastic displacements in the near-field of a propagating fault. Bull Seismol Soc Am 59(2):865–908Google Scholar
  53. 53.
    Zakian P, Khaji N, Kaveh A (2017) Graph theoretical methods for efficient stochastic finite element analysis of structures. Comput Struct 178:29–46.  https://doi.org/10.1016/j.compstruc.2016.10.009 CrossRefGoogle Scholar
  54. 54.
    Mohammadi S (2012) XFEM fracture analysis of composites. Wiley, HobokenCrossRefGoogle Scholar
  55. 55.
    Gracie R, Ventura G, Belytschko T (2007) A new fast finite element method for dislocations based on interior discontinuities. Int J Numer Methods Eng 69(2):423–441.  https://doi.org/10.1002/nme.1896 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering, Faculty of EngineeringArak UniversityArākIran
  2. 2.Faculty of Civil and Environmental EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations