Advertisement

Computational Mechanics

, Volume 64, Issue 4, pp 971–988 | Cite as

A virtual element method for transversely isotropic elasticity

  • B. D. Reddy
  • D. van HuyssteenEmail author
Original Paper

Abstract

This work studies the approximation of plane problems concerning transversely isotropic elasticity, using a low-order virtual element method (VEM), with a focus on near-incompressibility and near-inextensibility. Additionally, both homogeneous problems, in which the plane of isotropy is fixed; and non-homogeneous problems, in which the fibre direction defining the isotropy plane varies with position, are explored. In the latter case various options are considered for approximating the non-homogeneous fibre directions at an element level. Through a range of numerical examples the VEM approximations are shown to be robust and locking-free for several element geometries and for fibre directions that correspond to both mild and strong non-homogeneity. Further, the convergence rate of the VEM is shown to be comparable to classical low-order standard finite element approaches.

Notes

Acknowledgements

This work was carried out with support from the National Research Foundation of South Africa, through the South African Research Chair in Computational Mechanics. The authors acknowledge with thanks this support.

References

  1. 1.
    Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, HobokenzbMATHGoogle Scholar
  2. 2.
    Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinzbMATHGoogle Scholar
  3. 3.
    Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications. Springer, New York.  https://doi.org/10.1007/978-3-642-36519-5 CrossRefzbMATHGoogle Scholar
  4. 4.
    Hughes T (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  5. 5.
    Arnold D, Brezzi F, Cockburn B, Marini L (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39:1749–1779.  https://doi.org/10.1137/S0036142901384162 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grieshaber B, McBride A, Reddy B (2015) Uniformly convergent interior penalty methods using multilinear approximations for problems in elasticity. SIAM J Numer Anal 53:2255–2278.  https://doi.org/10.1137/140966253 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hansbo P, Larson M (2002) Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput Methods Appl Mech Eng 191:1895–1908.  https://doi.org/10.1016/S0045-7825(01)00358-9 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wihler TP (2004) Locking-free DGFEM for elasticity problems in polygons. IMANJA 24(1):45–75.  https://doi.org/10.1093/imanum/24.1.45 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini L, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214.  https://doi.org/10.1142/S0218202512500492 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Beirão da Veiga L, Brezzi F, Marini L, Russo A (2014) The hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24:1541–1573.  https://doi.org/10.1142/S021820251440003X MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gain A, Talischi C, Paulino G (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160.  https://doi.org/10.1016/j.cma.2014.05.005 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chi H, Beirão da Veiga L, Paulino G (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192.  https://doi.org/10.1016/j.cma.2016.12.020 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268.  https://doi.org/10.1007/s00466-017-1405-4 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem. Comput Mech 60:643–657.  https://doi.org/10.1007/s00466-017-1429-9 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Beirão da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346.  https://doi.org/10.1016/j.cma.2015.07.013 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wriggers P, Hudobivnik B (2017) A low order virtual element formulation for finite elasto-plastic deformations. Comput Methods Appl Mech Eng 327:459–477.  https://doi.org/10.1016/j.cma.2017.08.053 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wriggers P, Rust W, Reddy B (2016) A virtual element method for contact. Comput Mech 58:1039–1050.  https://doi.org/10.1007/s00466-016-1331-x MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wriggers P, Hudobivnik B, Korelc J (2018) Efficient low order virtual elements for anisotropic materials at finite strains. In: Advances in computational plasticity, computational methods in applied sciences. Springer, Berlin.  https://doi.org/10.1007/978-3-319-60885-3_20 Google Scholar
  19. 19.
    Auricchio F, Scalet G, Wriggers P (2017) Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint. Comput Mech 60:905–922.  https://doi.org/10.1007/s00466-017-1437-9 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rasolofoson F, Grieshaber B, Reddy BD (2019) Finite element approximations for near-incompressible and near-inextensible transversely isotropic bodies. Int J Numer Methods Eng 117(6):693–712.  https://doi.org/10.1002/nme.5972 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Artioli E, de Miranda S, Lovadina C, Patruno L (2017) A stress/displacement virtual element method for plane elasticity problems. Comput Methods Appl Mech Eng 325:155–174.  https://doi.org/10.1016/j.cma.2017.06.036 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Artioli E, de Miranda S, Lovadina C, Patruno L (2018) An equilibrium-based stress recovery procedure for the VEM. Int J Numer Methods Eng 117(8):885–900.  https://doi.org/10.1002/nme.5983 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Exadaktylos G (2001) On the constraints and relations of elastic constants of transversely isotropic geomaterials. Int J Rock Mech Min Sci 38:941–956.  https://doi.org/10.1016/S1365-1609(01)00063-6 CrossRefGoogle Scholar
  24. 24.
    Lai WM, Krempl E, Rubin DH (2009) Introduction to continuum mechanics. Elsevier Science & Technology, AmsterdamzbMATHGoogle Scholar
  25. 25.
    Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput Mech 60:355–377.  https://doi.org/10.1007/s00466-017-1404-5 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Applied Mathematics and Centre for Research in Computational and Applied MechanicsUniversity of Cape TownRondeboschSouth Africa
  2. 2.Department of Mechanical Engineering and Centre for Research in Computational and Applied MechanicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations