Computational Mechanics

, Volume 63, Issue 5, pp 1069–1082 | Cite as

A stochastic material point method for probabilistic dynamics and reliability

  • Weidong Chen
  • Yaqin ShiEmail author
  • Han Yan
  • Jingxin Ma
  • Yuzhuo Yang
  • Chunlong Xu
Original Paper


A stochastic material point method is proposed for reliability analysis of nonlinear structure subjected to explosions involving spatially varying random material properties. A random field representing material properties is discretized into a set of random variables with statistical properties of the random field. According to the failure criterion of nonlinear structure, the limit state function of a material point is established. The first-order reliability method is employed to predict the full probabilistic characteristics of material points. Besides, taking ship protection structure as an example, the failure mode of nonlinear structure is established and the model is implemented into the reliability analysis of ship protection structure subjected to underwater explosions. Numerical examples are presented to examine the accuracy and convergence of the stochastic material point method. Monte Carlo simulation is used as a validation tool, and good agreement is obtained between the results of the proposed method and Monte Carlo simulation.


Stochastic material point method Limit state function Failure mode Nonlinear structure Structural reliability 



  1. 1.
    Shinozuka M, Deodatis G (1988) Response variability of stochastic finite element systems. J Eng Mech 114(3):499–519CrossRefGoogle Scholar
  2. 2.
    Graham LL, Siragy EF (2001) Stochastic finite-element analysis for elastic buckling of stiffened panels. J Eng Mech 127(1):91–97CrossRefGoogle Scholar
  3. 3.
    Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051zbMATHCrossRefGoogle Scholar
  4. 4.
    Tao L, Song H, Chakrabarti S (2007) Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder. Comput Methods Appl Mech Eng 197:232–242zbMATHCrossRefGoogle Scholar
  5. 5.
    Natarajan S, Wang JC, Song CM, Birk C (2015) Isogeometric analysis enhanced by the scaled boundary finite element method. Comput Methods Appl Mech Eng 283:733–762MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Song CM, Wolf JP (2002) Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Comput Struct 80:183–197CrossRefGoogle Scholar
  7. 7.
    Long XY, Jiang C, Yang C, Han X, Gao W, Liu J (2016) A stochastic scaled boundary finite element method. Comput Methods Appl Mech Eng 308:23–46MathSciNetCrossRefGoogle Scholar
  8. 8.
    Long XY, Jiang C, Yang C, Han X, Gao W (2015) Stochastic response analysis of the scaled boundary finite element method and application to probabilistic fracture mechanics. Comput Struct 153:185–200CrossRefGoogle Scholar
  9. 9.
    Rabczuk T, Belytschko T (2017) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 318:762–782zbMATHCrossRefGoogle Scholar
  10. 10.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437–2455zbMATHCrossRefGoogle Scholar
  11. 11.
    Arun C, Rao B, Kumar MS (2007) An application of stochastic meshfree method in the field of fracture mechanics. In: Proceedings of international symposium on computational mechanics. Springer, p 227Google Scholar
  12. 12.
    Sellountos Euripides J, Sequeira Adélia (2008) An advanced meshless LBIE/RBF method for solving two-dimensional incompressible fluid flows. Comput Mech 41(5):617–631MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lucy LB (1977) A numerical approach to testing the fission hypothesis. Astron J 82:1013–1024CrossRefGoogle Scholar
  14. 14.
    Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48:89–96zbMATHCrossRefGoogle Scholar
  15. 15.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113:397–414MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:280–314MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Liu WK, Li S, Belytschko T (1997) Moving least square kernel Galerkin method-part I: methodology and convergence. Comput Methods Appl Mech Eng 143:422–433CrossRefGoogle Scholar
  21. 21.
    Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–186MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sulsky D, Schreyer HL (1996) Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. Comput Methods Appl Mech Eng 139:409–429zbMATHCrossRefGoogle Scholar
  23. 23.
    Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1):236–252zbMATHCrossRefGoogle Scholar
  24. 24.
    Andersen S, Andersen L (2010) Analysis of spatial interpolation in the material-point method. Comput Struct 88(7–8):506–518zbMATHCrossRefGoogle Scholar
  25. 25.
    Ching HK, Batra RC (2001) Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method. Comput Model Eng Sci 2:273–289Google Scholar
  26. 26.
    Mason M, Chen K, Hu PG (2014) Material point method of modelling and simulation of reacting flow of oxygen. Int J Comput Fluid Dyn 28:420–427MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ma J, Wang D, Randolph MF (2014) A new contact algorithm in the material point method for geotechnical simulations. Int J Numer Anal Methods Geomech 38(11):1197–1210CrossRefGoogle Scholar
  28. 28.
    Nairn JA, Guilkey JE (2015) Axisymmetric form of the generalized interpolation material point method. Int J Numer Methods Eng 101(2):127–147MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Ma S, Zhang X, Qiu XM (2009) Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int J Impact Eng 36(2):272–282CrossRefGoogle Scholar
  30. 30.
    Tao J, Zhang HG, Zheng YZ, Chen Z (2018) Development of generalized interpolation material point method for simulating fully coupled thermomechanical failure evolution. Comput Methods Appl Mech Eng 332:325–342MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hu W, Chen Z (2003) A multi-mesh MPM for simulating the meshing process of spur gears. Comput Struct 81(20):1991–2002CrossRefGoogle Scholar
  32. 32.
    Gan Y, Chen Z, Montgomery-Smith S (2011) Improve material point method for simulating the zona failure response in piezo-assisted intracytoplasmic sperm injection. Comput Model Eng Sci 73(1):45–75zbMATHGoogle Scholar
  33. 33.
    Lu MK, Zhang JY, Zhang HW, Zheng YG, Chen Z (2018) Time-discontinuous material point method for transient problems. Comput Methods Appl Mech Eng 328:663–685MathSciNetCrossRefGoogle Scholar
  34. 34.
    Jiang S, Chen Z, Sewell TD, Gan Y (2015) Multiscale simulation of the responses of discrete nanostructures to extreme loading conditions based on the material point method. Comput Methods Appl Mech Eng 297:219–238MathSciNetCrossRefGoogle Scholar
  35. 35.
    Von Neumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamical shocks. J Appl Phys 21(3):232–257MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Landshoff R (1955) A numerical method for treating fluid flow in the presence of shocks. Los Alamos Scientific Laboratory, Rept. LA-1930, 1955Google Scholar
  37. 37.
    Ghanem RG, Spanos PD (1991) Stochastic finite elements. A spectral approach. Springer, BerlinzbMATHCrossRefGoogle Scholar
  38. 38.
    Steven Greene M, Liu Y, Chen W, Liu WK (2011) Computational uncertainty analysis in multiresolution materials via stochastic constitutive theory. Comput Methods Appl Mech Eng 200(1–4):309–325MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Der Kiureghian A, Liu P-L (1986) Structural reliability under incomplete probability information. J Eng Mech 112(1):85–104CrossRefGoogle Scholar
  40. 40.
    Vanmarcke EH, Grigoriu M (1983) Stochastic finite element analysis of simple beams. J Eng Mech 109(5):1203–1214CrossRefGoogle Scholar
  41. 41.
    Liu WK, Belytschko T, Mani A (1986) Random fields finite element. Int J Numer Methods Eng 23:1831–1845MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Deodatis G (1991) Weighted integral method I: stochastic stiffness matrix. J Eng Mech 117(8):1851–1864CrossRefGoogle Scholar
  43. 43.
    Spanos PD, Ghanem RG (1989) Stochastic finite element expansion for random media. J Eng Mech 115(5):1035–1053CrossRefGoogle Scholar
  44. 44.
    Johnson GR, Cook W (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRefGoogle Scholar
  45. 45.
    Bahri A, Guermazi N, Elleuch K, Ürgen M (2016) On the erosive wear of 304 L stainless steel caused by olive seed particles impact: modeling and experiments. Tribol Int 102:608–619CrossRefGoogle Scholar
  46. 46.
    Wang XM, Shi J (2013) Validation of Johnson–Cook plasticity and damage model using impact experiment. Int J Impact Eng 60:67–75CrossRefGoogle Scholar
  47. 47.
    Banerjee A, Dhar S (2015) Determination of Validation of Johnson–Cook plasticity and damage model using impact experiment. constants and numerical modelling of Charpy impact test of armour steel. Mater Sci Eng A 640:200–209CrossRefGoogle Scholar
  48. 48.
    Tenorio M, Pelegri AA (2013) Interfacial debonding of glass single fiber composites using the Johnson–Cook failure model. In: ASME. ASME international mechanical engineering congress and exposition, volume 15: safety, reliability and risk; Virtual Podium (Posters): V015T16A023.
  49. 49.
    Shams A, Mashayekhi M (2012) Improvement of orthogonal cutting simulation with a nonlocal damage model. Int J Mech Sci 61:88–96CrossRefGoogle Scholar
  50. 50.
    Ragnar L, Senad R, Lennart Josefson B (2016) Mesh objective continuum damage models for ductile fracture. Int J Numer Methods Eng 106(10):840–860MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–169CrossRefGoogle Scholar
  52. 52.
    Imai K, Frangopol DM (2000) Geometrically nonlinear finite element reliability analysis of structural systems. I: theory. Comput Struct 77:677–691CrossRefGoogle Scholar
  53. 53.
    Lopez RH, Beck AT (2012) Reliability-based design optimization strategies based on FORM: a review. J Braz Soc Mech Sci Eng 34(4):506–514CrossRefGoogle Scholar
  54. 54.
    Koduru SD, Haukaas T (2010) Feasibility of FORM in finite element reliability analysis. Struct Saf 32(2):145–153CrossRefGoogle Scholar
  55. 55.
    Aoues Y, Chateauneuf A (2010) Benchmark study of numerical methods for reliability-based design optimization. Struct Multidiscip Optim 41(2):277–294MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Wang L, Wang XJ, Xia Y (2014) Hybrid reliability analysis of structures with multi-source uncertainties. Acta Mech 225(2):413–430zbMATHCrossRefGoogle Scholar
  57. 57.
    Jiang C, Han S, Ji M, Han X (2015) A new method to solve the structural reliability index based on homotopy analysis. Acta Mech 226:1067–1083MathSciNetCrossRefGoogle Scholar
  58. 58.
    Liu Y, Meng LL, Liu K, Zhang YM (2016) Chatter reliability of milling system based on first-order second-moment method. Int J Adv Manuf Technol 87(1–4):801–809CrossRefGoogle Scholar
  59. 59.
    Liu N, Tang WH (2004) System reliability evaluation of nonlinear continuum structures—a probabilistic FEM approach. Finite Elem Anal Des 40(5–6):595–610CrossRefGoogle Scholar
  60. 60.
    Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley, ChichesterGoogle Scholar
  61. 61.
    Zhang J, Shi XH (2017) Experimental study on the response of multi-layered protective structure subjected to underwater contact explosions. Int J Impact Eng 100:23–34CrossRefGoogle Scholar
  62. 62.
    Charki A, Bigaud D, Guérin F (2013) Behavior analysis of machines and system air hemispherical spindles using finite element modeling. Ind Lubr Tribol 65(4):272–283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weidong Chen
    • 1
  • Yaqin Shi
    • 1
    Email author
  • Han Yan
    • 1
  • Jingxin Ma
    • 1
  • Yuzhuo Yang
    • 2
  • Chunlong Xu
    • 1
  1. 1.College of Aerospace and Civil EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Architecture and Civil Engineering DepartmentCity University of Hong KongKowloonHong Kong

Personalised recommendations