Advertisement

Scalable parallel implementation of CISAMR: a non-iterative mesh generation algorithm

  • Bowen Liang
  • Anand Nagarajan
  • Soheil Soghrati
Original Paper

Abstract

We present the parallel implementation of a non-iterative mesh generation algorithm, named conforming to interface structured adaptive mesh refinement (CISAMR). The partitioning phase is tightly integrated with a microstructure reconstruction algorithm to determine the optimized arrangement of partitions based on shapes/sizes of particles. Each processor then creates a structured sub-mesh with one layer of ghost elements for its designated partition. h-adaptivity and r-adaptivity phases of the CISAMR algorithm are also carried out independently in each sub-mesh. Processors then communicate to merge mesh/hanging nodes along faces shared between neighboring partitions. The final mesh is constructed by performing face-swapping and element subdivision phases, after which a minimal communication phase is required in 3D CISAMR to merge new nodes created on partition boundaries. Several example problems, together with scalability tests demonstrating a super-linear speedup, are provided to show the application of parallel CISAMR for generating massive conforming meshes.

Keywords

Parallel mesh generation Finite element Scalability CISAMR Heterogeneous materials 

Notes

Acknowledgements

This work has been supported by the Air Force Office of Scientific Research (AFOSR) under Grant Number FA9550-17-1-0350. The authors also acknowledge partial support from the Ohio State University Simulation Innovation and Modeling Center (SIMCenter), as well as the allocation of computing time from the Ohio Supercomputer Center (OSC).

References

  1. 1.
    Espinha R, Park K, Paulino GH, Celes W (2013) Scalable parallel dynamic fracture simulation using an extrinsic cohesive zone model. Comput Methods Appl Mech Eng 266:144–161CrossRefGoogle Scholar
  2. 2.
    Tu T, Yu H, Ramirez-Guzman L, Bielak J, Ghattas O, Ma KL, O’hallaron DR (2006) From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing. In: Proceedings of the 2006 ACM/IEEE conference on supercomputing, p 91. ACMGoogle Scholar
  3. 3.
    Karypis G, Kumar V (1995) Metis—unstructured graph partitioning and sparse matrix ordering system, version 2.0Google Scholar
  4. 4.
    Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H (2018) PETSc web pageGoogle Scholar
  5. 5.
    Ito Y, Shih AM, Erukala AK, Soni BK, Chernikov A, Chrisochoides NP, Nakahashi K (2007) Parallel unstructured mesh generation by an advancing front method. Math Comput Simul 75(5–6):200–209MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Tu T, O’hallaron DR, Ghattas O (2005) Scalable parallel octree meshing for terascale applications. In: Proceedings of the 2005 ACM/IEEE conference on supercomputing, p 4. IEEE Computer SocietyGoogle Scholar
  7. 7.
    Hudson B, Miller GL, Phillips T (2007) Sparse parallel delaunay mesh refinement. In: Proceedings of the nineteenth annual ACM symposium on parallel algorithms and architectures, pp 339–347. ACMGoogle Scholar
  8. 8.
    Rivara MC, Calderon C, Fedorov A, Chrisochoides N (2006) Parallel decoupled terminal-edge bisection method for 3D mesh generation. Eng Comput 22(2):111–119CrossRefGoogle Scholar
  9. 9.
    Shephard MS, Flaherty JE, de Cougny HL, Ozturan C, Bottasso CL, Beall MW (1995) Parallel automated adaptive procedures for unstructured meshes. Parallel Comput CFD 807:1–6Google Scholar
  10. 10.
    Chrisochoides N (2006) Parallel mesh generation. In: Barth TJ, Griebel M, Keyes DE, Nieminen RM, Roose D, Schlick T (eds) Numerical solution of partial differential equations on parallel computers. Springer, Berlin, pp 237–264zbMATHCrossRefGoogle Scholar
  11. 11.
    Lohner R, Cebral JR (1999) Parallel advancing front grid generation. In: International meshing roundtable, Sandia National Labs. CiteseerGoogle Scholar
  12. 12.
    Saxena M, Perucchio R (1992) Parallel FEM algorithms based on recursive spatial decomposition I. Automatic mesh generation. Comput Struct 45(5–6):817–831zbMATHCrossRefGoogle Scholar
  13. 13.
    Karypis G, Kumar V (1998) Multilevel k-way partitioning scheme for irregular graphs. J Parallel Distrib Comput 48(1):96–129zbMATHCrossRefGoogle Scholar
  14. 14.
    Hendrickson B, Kolda TG (2000) Graph partitioning models for parallel computing. Parallel Comput 26(12):1519–1534MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Andreev K, Racke H (2006) Balanced graph partitioning. Theory Comput Syst 39(6):929–939MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hendrickson B, Leland R (1993) The Chaco users guide. Version 1.0. Technical report. Sandia National Labs, AlbuquerqueCrossRefGoogle Scholar
  17. 17.
    Teng Y.A, Sullivan F, Beichl I, Puppo E (1993) A data-parallel algorithm for three-dimensional Delaunay triangulation and its implementation. In: Proceedings of the 1993 ACM/IEEE conference on supercomputing, pp 112–121. ACMGoogle Scholar
  18. 18.
    Galtier J, George PL (1996) Prepartitioning as a way to mesh subdomains in parallel. In: 5th international meshing roundtable. CiteseerGoogle Scholar
  19. 19.
    Löhner R, Camberos J, Merriam M (1992) Parallel unstructured grid generation. Comput Methods Appl Mech Eng 95(3):343–357zbMATHCrossRefGoogle Scholar
  20. 20.
    Löhner R (2001) A parallel advancing front grid generation scheme. Int J Numer Methods Eng 51(6):663–678zbMATHCrossRefGoogle Scholar
  21. 21.
    Löhner R (2014) Recent advances in parallel advancing front grid generation. Arch Comput Methods Eng 21(2):127–140MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Yerry MA, Shephard MS (1984) Automatic three-dimensional mesh generation by the modified-octree technique. Int J Numer Methods Eng 20(11):1965–1990zbMATHCrossRefGoogle Scholar
  23. 23.
    Shephard MS, Georges MK (1991) Automatic three-dimensional mesh generation by the finite octree technique. Int J Numer Methods Eng 32(4):709–749zbMATHCrossRefGoogle Scholar
  24. 24.
    Ito Y, Shih AM, Soni BK (2009) Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int J Numer Methods Eng 77(13):1809–1833MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zhang YJ, Bajaj C (2006) Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput Methods Appl Mech Eng 195(9–12):942–960zbMATHCrossRefGoogle Scholar
  26. 26.
    Muthukrishnan SN, Shiakolas PS, Nambiar RV, Lawrence KL (1995) Simple algorithm for adaptive refinement of three-dimensional finite element tetrahedral meshes. AIAA J 33(5):928–932zbMATHCrossRefGoogle Scholar
  27. 27.
    Chew LP (1989) Guaranteed-quality triangular meshes. Technical Report, Cornell UniversityGoogle Scholar
  28. 28.
    Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput Geom 22(1–3):21–74MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Chen MB, Chuang TR, Wu JJ (2004) Efficient parallel implementations of near Delaunay triangulation with high performance fortran. Concurr Comput Pract Exp 16(12):1143–1159CrossRefGoogle Scholar
  30. 30.
    Blelloch GE, Miller GL, Talmor D (1996) Developing a practical projection-based parallel Delaunay algorithm. In: Proceedings of the twelfth annual symposium on computational geometry, pp 186–195. ACMGoogle Scholar
  31. 31.
    Lo SH (1985) A new mesh generation scheme for arbitrary planar domains. Int J Numer Methods Eng 21(8):1403–1426zbMATHCrossRefGoogle Scholar
  32. 32.
    Rivara MC (1984) Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int J Numer Methods Eng 20(4):745–756MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Rivara MC, Hitschfeld N, Simpson B (2001) Terminal-edges Delaunay (small-angle based) algorithm for the quality triangulation problem. Comput Aided Des 33(3):263–277CrossRefGoogle Scholar
  34. 34.
    Jones MT, Plassmann PE (1994) Parallel algorithms for the adaptive refinement and partitioning of unstructured meshes. In: IEEE Proceedings of the scalable high-performance computing conference, pp 478–485Google Scholar
  35. 35.
    De Cougny HL, Shephard MS (1999) Parallel refinement and coarsening of tetrahedral meshes. Int J Numer Methods Eng 46(7):1101–1125MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Coupez T, Digonnet H, Ducloux R (2000) Parallel meshing and remeshing. Appl Math Model 25(2):153–175zbMATHCrossRefGoogle Scholar
  37. 37.
    George PL (1999) Tet meshing: construction, optimization and adaptation. In: 8th international meshing roundtable, pp 133–141. CiteseerGoogle Scholar
  38. 38.
    Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 4(6):709–712zbMATHCrossRefGoogle Scholar
  39. 39.
    Soghrati S, Nagarajan A, Liang B (2017) Conforming to interface structured adaptive mesh refinement: new technique for the automated modeling of materials with complex microstructures. Finite Elements Anal Design 125:24–40CrossRefGoogle Scholar
  40. 40.
    Nagarajan A, Soghrati S (2018) Conforming to interface structuredadaptive mesh refinement: 3D algorithm and implementation. Comput Mech 62(5):1213–1238MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Yang M, Nagarajan A, Liang B, Soghrati S (2018) New algorithms for virtual reconstruction of heterogeneous microstructures. Comput Methods Appl Mech Eng 338:275–298MathSciNetCrossRefGoogle Scholar
  42. 42.
    Nguyen VP, Stroeven M, Sluys LJ (2011) Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J Multiscale Model 3(04):229–270MathSciNetCrossRefGoogle Scholar
  43. 43.
    Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802CrossRefGoogle Scholar
  44. 44.
    Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworthiness 9(5):449–464CrossRefGoogle Scholar
  45. 45.
    Vuong N, Van D (2016) The behavior of ductile damage model on steel structure failure. Proc Eng 142:26–33CrossRefGoogle Scholar
  46. 46.
    Karadeniz ZH, Kumlutas D (2007) A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos Struct 78(1):1–10CrossRefGoogle Scholar
  47. 47.
    Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the MPI message passing interface standard. Parallel Comput 22(6):789–828zbMATHCrossRefGoogle Scholar
  48. 48.
    Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng 5(1):46–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Mechanical and Aerospace Engineering, Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations