Computational Mechanics

, Volume 63, Issue 5, pp 869–883 | Cite as

XFEM modeling for curved fracture in the anisotropic fracture toughness medium

  • Yue Gao
  • Zhanli LiuEmail author
  • Tao Wang
  • Qinglei Zeng
  • Xiang Li
  • Zhuo Zhuang
Original Paper


The materials with anisotropic fracture toughness are familiar in nature, e.g., anisotropic rocks, woods, and crystals. The deflecting crack propagation behaviors are often observed in these materials due to the anisotropic fracture toughness property. In this paper, the extended finite element method (XFEM) is developed for modeling the crack extending behavior in anisotropic fracture toughness medium. First, anisotropic fracture toughness profiles are introduced and embedded into XFEM, and the crack deflecting direction is predicted based on maximum energy release rate criterion. To capture the details of the twisting crack path as accurate as possible in XFEM, a mesh independent piecewise linear crack model is developed numerically. Then several numerical examples in studying the curved crack path in a material with the anisotropic fracture toughness property are given. With the techniques of XFEM embedded with anisotropic fracture toughness, the crack path in such anisotropic materials could be predicted and designed.


Anisotropic material Anisotropic fracture toughness Energy release rate Extended finite element method (XFEM) Crack growth 



This work is supported by the National Key Research and Development Program of China (No. 2017YFB0702003), the National Natural Science Foundation of China under Grant Nos. 11532008 and 11722218, Science Challenge Program No. JCKY2016212A502, and Tsinghua University Initiative Scientific Research Program.


  1. 1.
    Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc A Math Phys Eng Sci 221(582–593):163–198. CrossRefGoogle Scholar
  2. 2.
    Gao H, Chiu CH (1992) Slightly curved or kinked cracks in anisotropic elastic solids. Int J Solids Struct 29(8):947–972. CrossRefzbMATHGoogle Scholar
  3. 3.
    Hakim V, Karma A (2005) Crack path prediction in anisotropic brittle materials. Phys Rev Lett 95(23):235–501. CrossRefGoogle Scholar
  4. 4.
    Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2):342–368. CrossRefzbMATHGoogle Scholar
  5. 5.
    Chambolle A, Francfort G, Marigo JJ (2009) When and how do cracks propagate? J Mech Phys Solids Sep 57(9):1614–1622. MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Takei A, Roman B, Bico J, Hamm E, Melo F (2013) Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the wulff plot. Phys Rev Lett 110(14):144–301. CrossRefGoogle Scholar
  7. 7.
    Gao Y, Liu Z, Zeng Q, Wang T, Zhuang Z, Hwang KC (2017) Theoretical and numerical prediction of crack path in the material with anisotropic fracture toughness. Eng Fract Mech 180:330–347. CrossRefGoogle Scholar
  8. 8.
    Gao Y, Liu Z, Wang T, Zeng Q, Li X, Zhuang Z (2018) Crack forbidden area in the anisotropic fracture toughness medium. Extreme Mech Lett 22:172–175. CrossRefGoogle Scholar
  9. 9.
    Nasseri M, Mohanty B (2008) Fracture toughness anisotropy in granitic rocks. Int J Rock Mech Min Sci 45(2):167–193. CrossRefGoogle Scholar
  10. 10.
    Kataoka M, Obara Y, Kuruppu M (2015) Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure. Rock Mech Rock Eng 48(4):1353–1367. CrossRefGoogle Scholar
  11. 11.
    Chandler MR, Meredith PG, Brantut N, Crawford BR (2016) Fracture toughness anisotropy in shale. J Geophys Res Solid Earth 121(3):1706–1729. CrossRefGoogle Scholar
  12. 12.
    Li W, Jin Z, Cusatis G (2018) Size effect analysis for the characterization of marcellus shale quasi-brittle fracture properties. Rock Mech Rock Eng.
  13. 13.
    Ast J, Przybilla T, Maier V, Durst K, Göken M (2014) Microcantilever bending experiments in NiAl Evaluation, size effects, and crack tip plasticity. J Mater Res Sep 29(18):2129–2140. CrossRefGoogle Scholar
  14. 14.
    Wang Z, Shen X, Akbari GM, Lin X, Wu Y, Liu X, Sun X, Kim JK (2015) Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl Mater Interf 7(9):5538–5549. CrossRefGoogle Scholar
  15. 15.
    Pisarenko GG, Chushko VM, Kovalev SP (1985) Anisotropy of fracture toughness of piezoelectric ceramics. J Am Ceram Soc 68(5):259–265. CrossRefGoogle Scholar
  16. 16.
    Gómez-Monterde J, Schulte M, Ilijevic S, Hain J, Sánchez-Soto M, Santana OO, Maspoch ML (2016) Effect of microcellular foaming on the fracture behavior of ABS polymer. J Appl Polym Sci 133(7):43010. CrossRefGoogle Scholar
  17. 17.
    Ando T, Li X, Nakao S, Kasai T, Shikidd M, Sato K (2004) Effect of crystal orientation on fracture strength and fracture toughness of single crystal silicon. In: 17th International conference on micro electro mechanical systems, pp 177–180.
  18. 18.
    Li X, Kasai T, Nakao S, Tanaka H, Ando T, Shikida M, Sato K (2005) Measurement for fracture toughness of single crystal silicon film with tensile test. Sens Actuators A Phys 119(1):229–235. CrossRefGoogle Scholar
  19. 19.
    Uesugi A, Hirai Y, Sugano K, Tsuchiya T, Tabata O (2013) Effect of surface morphology and crystal orientations on fracture strength of thin film (110) single crystal silicon. In: 2013 Transducers & Eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII), June, IEEE 2013, pp 1946–1949.
  20. 20.
    Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102(3–4):711–727. MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li W, Rezakhani R, Jin C, Zhou X, Cusatis G (2017) A multiscale framework for the simulation of the anisotropic mechanical behavior of shale. Int J Numer Anal Methods Geomech 41(14):1494–1522. CrossRefGoogle Scholar
  22. 22.
    Shanthraj P, Svendsen B, Sharma L, Roters F, Raabe D (2017) Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J Mech Phys Solids 99:19–34. MathSciNetCrossRefGoogle Scholar
  23. 23.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150.;2-J CrossRefzbMATHGoogle Scholar
  24. 24.
    Liu ZL, Menouillard T, Belytschko T (2011) An XFEM/spectral element method for dynamic crack propagation. Int J Fract 169(2):183–198. CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhao J, Bessa MA, Oswald J, Liu Z, Belytschko T (2016) A method for modeling the transition of weak discontinuities to strong discontinuities: from interfaces to cracks. Int J Numer Methods Eng 105(11):834–854. MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zeng Q, Liu Z, Wang T, Gao Y, Zhuang Z (2018) Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore. Comput Mech 61(1–2):137–155. MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zeng Q, Wang T, Liu Z, Zhuang Z (2017) Simulation-based unitary fracking condition and multiscale self-consistent fracture network formation in shale. J Appl Mech 84(5):051004. CrossRefGoogle Scholar
  28. 28.
    Zeng Q, Liu Z, Wang T, Gao Y, Zhuang Z (2017) Stability analysis of the propagation of periodic parallel hydraulic fractures. Int J Fract 208(1–2):191–201. CrossRefGoogle Scholar
  29. 29.
    Wang T, Liu Z, Zeng Q, Gao Y, Zhuang Z (2017) XFEM modeling of hydraulic fracture in porous rocks with natural fractures. Sci China Phys Mech Astron 60(8):084612. CrossRefGoogle Scholar
  30. 30.
    Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2):335–341. CrossRefzbMATHGoogle Scholar
  31. 31.
    Amestoy M, Leblond J (1992) Crack paths in plane situationsII. Detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29(4):465–501. CrossRefzbMATHGoogle Scholar
  32. 32.
    Kim JH, Paulino GH (2003) The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors. Int J Solids Struct 40(15):3967–4001. CrossRefzbMATHGoogle Scholar
  33. 33.
    Asadpoure A, Mohammadi S (2007) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69(10):2150–2172. CrossRefzbMATHGoogle Scholar
  34. 34.
    He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25(9):1053–1067. CrossRefGoogle Scholar
  35. 35.
    Bresenham JE (1965) Algorithm for computer control of a digital plotter. IBM Syst J 4(1):25–30. CrossRefGoogle Scholar
  36. 36.
    Shimrat M (1962) Algorithm 112: position of point relative to polygon. Commun ACM 5(8):434. CrossRefGoogle Scholar
  37. 37.
    He MY, Hutchinson JW (1989) Kinking of a crack out of an interface. J Appl Mech 56(2):270–278. CrossRefGoogle Scholar
  38. 38.
    He MY, Hutchinson JW (1989) Kinking of a crack out of an interface: tabulated solution coefficients. Technical report.
  39. 39.
    Nuismer RJ (1975) An energy release rate criterion for mixed mode fracture. Int J Fract 11(2):245–250. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  2. 2.Center for Mechanics and MaterialsTsinghua UniversityBeijingChina

Personalised recommendations