Advertisement

A segmentation-free isogeometric extended mortar contact method

  • Thang X. Duong
  • Laura De Lorenzis
  • Roger A. Sauer
Original Paper

Abstract

This paper presents a new isogeometric mortar contact formulation based on an extended finite element interpolation to capture physical pressure discontinuities at the contact boundary. The so called two-half-pass algorithm is employed, which leads to an unbiased formulation and, when applied to the mortar setting, has the additional advantage that the mortar coupling term is no longer present in the contact forces. As a result, the computationally expensive segmentation at overlapping master–slave element boundaries, usually required in mortar methods (although often simplified with loss of accuracy), is not needed from the outset. For the numerical integration of general contact problems, the so-called refined boundary quadrature is employed, which is based on adaptive partitioning of contact elements along the contact boundary. The contact patch test shows that the proposed formulation passes the test without using either segmentation or refined boundary quadrature. Several numerical examples are presented to demonstrate the robustness and accuracy of the proposed formulation.

Keywords

Computational contact mechanics Isogeometric analysis Mortar methods Segmentation Extended finite element methods 

Notes

Acknowledgements

The authors are grateful to the German Research Foundation (DFG) for supporting this research under Grants GSC 111 and SA1822/8-1.

References

  1. 1.
    Bartels R, Beatty J, Barsky B (1996) An introduction to splines for use in computer graphics and geometric modeling. Morgan Kaufmann, BurlingtonMATHGoogle Scholar
  2. 2.
    Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) Isogeometric mortar methods. Comput Methods Appl Mech Eng 284(Supplement C):292–319MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Comput Methods Appl Mech Eng 200:1317–1332MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Corbett CJ, Sauer RA (2014) NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM Mitt 37:85–123MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49:1–20MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC (2011) X-fem in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87:541–565MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical mortar contact problems. Comput Methods Appl Mech Eng 274:192–212MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Duong TX (2017) Efficient contact computations based on isogeometric discretization, mortar methods and refined boundary quadrature. PhD thesis, RWTH AachenGoogle Scholar
  10. 10.
    Duong TX, Roohbakhshan F, Sauer RA (2017) A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput Methods Appl Mech Eng 316:13–28MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duong TX, Sauer RA (2015) An accurate quadrature technique for the contact boundary in 3D finite element computations. Comput Mech 55(1):145–166MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Duong XT, Lorenzis LD, Sauer RA (2017) On the shape functions for the contact pressure in mortar methods. In: von Scheven M, Keip M-A, Karajan N (eds) Proceedings of the 7th GACM colloquium on computational mechanics, pp 130–133Google Scholar
  13. 13.
    Fries T-P, Belytschko T (2006) The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int J Numer Methods Eng 68:1358–1385CrossRefMATHGoogle Scholar
  14. 14.
    Graveleau M, Chevaugeon N, Moës N (2015) The inequality level-set approach to handle contact: membrane case. Adv Model Simul Eng Sci 2(1):16–31CrossRefGoogle Scholar
  15. 15.
    Hartmann S, Ramm E (2008) A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers. Finite Elem Anal Des 44:245–258MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hesch C, Betsch P (2008) A mortar method for energy–momentum conserving schemes in frictionless dynamic contact problems. Int J Numer Methods Eng 77:1468–1500MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput Mech 48:461–475CrossRefMATHGoogle Scholar
  18. 18.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kim J-Y, Youn S-K (2012) Isogeometric contact analysis using mortar method. Int J Numer Methods Eng 89(12):1559–1581MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48:1525–1547MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATHGoogle Scholar
  22. 22.
    Ogden RW (1987) Non-linear elastic deformations. Dover Edition, MineolaGoogle Scholar
  23. 23.
    Popp A, Seitz A, Gee MW, Wall W (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34(4):B421–B446MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629CrossRefMATHGoogle Scholar
  26. 26.
    Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193:4891–4913MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sauer RA (2013) Local finite element enrichment strategies for 2D contact computations and a corresponding postprocessing scheme. Comput Mech 52(2):301–319MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101:251–280MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp A (2016) Isogeometric dual mortar methods for computational contact mechanics. Comput Methods Appl Mech Eng 301:259–280MathSciNetCrossRefGoogle Scholar
  32. 32.
    Temizer I (2012) A mixed formulation of mortar-based frictionless contact. Comput Methods Appl Mech Eng 223–224:173–185MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Temizer I, Wriggers P, Hughes T (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Wilking C, Bischoff M (2017) Alternative integration algorithms for three-dimensional mortar contact. Comput Mech 59:203–218MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, BerlinCrossRefMATHGoogle Scholar
  37. 37.
    Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62:1183–1225MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thang X. Duong
    • 1
  • Laura De Lorenzis
    • 2
  • Roger A. Sauer
    • 1
  1. 1.Aachen Institute for Advanced Study in Computational Engineering Science (AICES)RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Applied MechanicsTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations