Advertisement

Computational Mechanics

, Volume 62, Issue 3, pp 563–585 | Cite as

A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff–Love shells. Part I: basic theory and modeling of delamination and transverse shear

  • Y. Bazilevs
  • M. S. Pigazzini
  • A. Ellison
  • H. Kim
Original Paper

Abstract

In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff–Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff–Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff–Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

Keywords

Composite laminates Kirchhoff–Love shells Isogeometric analysis (IGA) NURBS Cohesive interface Impact damage 

Notes

Acknowledgements

This work was supported by NASA Advanced Composites Project No. 15-ACP1-0021. We thank F. Leone, C, Rose, and C. Davila from NASA Langley Research Center for their valuable comments and suggestions.

References

  1. 1.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRefMATHGoogle Scholar
  3. 3.
    Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication), 2nd edn. Springer, New YorkCrossRefMATHGoogle Scholar
  4. 4.
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Benson D, Bazilevs Y, Hsu M-C, Hughes T (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benson D, Bazilevs Y, Hsu M-C, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kiendl J, Hsu M-C, Wu M, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bazilevs Y, Takizawa K, Tezduyar T (2013) Computational fluid-structure interaction: methods and applications. Wiley, New YorkCrossRefMATHGoogle Scholar
  11. 11.
    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid-structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174.  https://doi.org/10.1016/j.compfluid.2016.03.008 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211.  https://doi.org/10.1016/j.compfluid.2015.07.013 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Wang C, Wu MC-H, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis. Comput Fluids 142:3–14.  https://doi.org/10.1016/j.compfluid.2015.12.004 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kachanov L (1986) Introduction to continuum damage mechanics. Springer, NetherlandsCrossRefMATHGoogle Scholar
  19. 19.
    Chaboche J (1987) Continuum damage mechanics: present state and future trends. Nucl Eng Des 105:19–33CrossRefGoogle Scholar
  20. 20.
    Ladevéze P, Dantec EL (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267CrossRefGoogle Scholar
  21. 21.
    Matzenmiller A, Lubliner J, Taylor R (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152CrossRefGoogle Scholar
  22. 22.
    Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334CrossRefGoogle Scholar
  23. 23.
    Pucka A, Schürmann H (2002) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 62:16331662Google Scholar
  24. 24.
    Dàvila C, Camanho P (November 2003) Failure criteria for FRP laminates in plane stress Technical Report NASA/TM-2003-212663. Langley Research Center, Hampton, VirginiaGoogle Scholar
  25. 25.
    Pinho S, Iannucci L, Robinson P (2006) Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: part I: development. Compos Part A 37:6373Google Scholar
  26. 26.
    Deng X, Korobenko A, Yan J, Bazilevs Y (2015) Isogeometric analysis of continuum damage in rotation-free composite shells. Comput Methods Appl Mech Eng 284:349–372MathSciNetCrossRefGoogle Scholar
  27. 27.
    Remmers J, Wells G, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58:2013–2040CrossRefMATHGoogle Scholar
  28. 28.
    Hosseini S, Remmers J, Verhoosel C, de Borst R (2015) Propagation of delamination in composite materials with isogeometric continuum shell elements. Int J Numer Methods Eng 102:159–179MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Carvalho ND, Chen B, Pinho S, Ratcliffe J, Baiz P, Tay T (2015) Modeling delamination migration in cross-ply tape laminates. Compos Part A 71:192–203CrossRefGoogle Scholar
  30. 30.
    Allix O, Ladevéze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22:235–242CrossRefGoogle Scholar
  31. 31.
    Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31:61–74CrossRefGoogle Scholar
  32. 32.
    Barbero E (2013) Finite element analysis of composite materials using Abaqus. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Camanho P, Dàvila C, de Moura F (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438CrossRefGoogle Scholar
  34. 34.
    Turon A, Camanho P, Costa J, Dàvila C (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089CrossRefGoogle Scholar
  35. 35.
    Jiang W-G, Hallett S, Green B, Wisnom M (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69:1982–1995CrossRefMATHGoogle Scholar
  36. 36.
    Dàvila C, Camanho P, Turon A (2007) Cohesive elements for shells. Technical Report 214869, NASA Langley Research CenterGoogle Scholar
  37. 37.
    Nguyen V, Kerfriden P, Bordas S (2014) Two-and three-dimensional isogeometric cohesive elements for composite delamination analysis. Compos Part B 60:193–212CrossRefGoogle Scholar
  38. 38.
    Bischoff M, Bletzinger K, Wall W, Ramm E (2004) Models and finite elements for thin-walled structures. Encycl Computat Mech 2:59–137Google Scholar
  39. 39.
    Reddy J (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton. ISBN 9780849315923Google Scholar
  40. 40.
    Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A 38:2333–2341CrossRefGoogle Scholar
  41. 41.
    Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 7:448–464CrossRefGoogle Scholar
  42. 42.
    Shahid I, Chang F-K (1995) An accumulative damage model for tensile and shear failures of laminated composite plates. J Compos Mater 29:926–981CrossRefGoogle Scholar
  43. 43.
    Bažant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177Google Scholar
  44. 44.
    Duvaut G, Lions J (1976) Inequalities in mechanics and physics. Springer, BerlinCrossRefMATHGoogle Scholar
  45. 45.
    Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2:1–49MathSciNetCrossRefGoogle Scholar
  46. 46.
    Turon A, Camanho P, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct 92:1857–1864CrossRefGoogle Scholar
  47. 47.
    Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449CrossRefGoogle Scholar
  48. 48.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–75MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292CrossRefGoogle Scholar
  50. 50.
    Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  51. 51.
    Auricchio F, da Veiga LB, Hughes T, Reali A, Sangalli G (2012) Isogeometric collocation for elastostatics and explicit dynamics. Comput Methods Appl Mech Eng 249–252:2–14MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Mi Y, Crisfield A, Davies G (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272CrossRefGoogle Scholar
  53. 53.
    Turon A, Dàvila C, Camanho P, Costa J (2007) An engineering solution for mesh size effects in the simulation of selamination using cohesive zone models. Eng Fract Mech 74:1665–1682Google Scholar
  54. 54.
    Falk M, Needleman A, Rice J (2001) A critical evaluation of cohesive zone models of dynamic fracture. J de Physi IV 11:43–50Google Scholar
  55. 55.
    Carpinteri A (1989) Softening and snap-back instability in cohesive solids. Int J Numer Methods Eng 28:1521–1537CrossRefGoogle Scholar
  56. 56.
    Hellweg H, Crisfield M (1998) A new arc-length method for handling sharp snap-backs. Comput Struct 66:704709CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Y. Bazilevs
    • 1
  • M. S. Pigazzini
    • 1
  • A. Ellison
    • 1
  • H. Kim
    • 1
  1. 1.Department of Structural EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations