Skip to main content
Log in

Stabilized plane and axisymmetric Lobatto finite element models

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  2. Maday Y, Meiron D, Patera AT, Rønquist EM (1993) Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J Sci Comput 14:310–337

    Article  MATH  MathSciNet  Google Scholar 

  3. Komatitsch D, Vilotte JP (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88:368–392

    Google Scholar 

  4. Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sanchez-Sesma FJ (1999) The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45:1139–1164

    Article  MATH  Google Scholar 

  5. Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188:217–233

    Article  MATH  Google Scholar 

  6. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin

    Google Scholar 

  7. De Basabe JD, Sen MK (2007) Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72:T81–T95

    Article  Google Scholar 

  8. Kudela P, Żak A, Krawczuk M, Ostachowicz W (2007) Modelling of wave propagation in composite plates using the time domain spectral element method. J Sound Vib 302:728–745

    Article  MATH  Google Scholar 

  9. Seriani G, Oliveira SP (2008) Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45:729–744

    Article  MATH  MathSciNet  Google Scholar 

  10. Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31–41

    Article  Google Scholar 

  11. Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Methods Eng 80:1718–1742

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhong H, Yu T (2009) A weak form quadrature element method for plane elasticity problems. Appl Math Model 33:3801–3814

    Article  MATH  MathSciNet  Google Scholar 

  13. Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2:1333–1336

    Article  Google Scholar 

  14. Lee SW, Rhiu JJ (1986) A new efficient approach to the formulation of mixed finite element models for structural analysis. Int J Numer Methods Eng 23:1629–1641

    Article  MATH  Google Scholar 

  15. Rhiu JJ, Lee SW, Russell RM (1990) Two higher-order shell finite elements with stabilization matrix. AIAA J 28:1517–1524

    Article  Google Scholar 

  16. Sze KY (1993) A novel approach for devising higher-order hybrid elements. Int J Numer Methods Eng 36:3303–3316

    Article  MATH  MathSciNet  Google Scholar 

  17. Sze KY (1994) Stabilization schemes for 12-node to 21-node brick elements based on orthogonal and consistently assumed stress modes. Comput Methods Appl Mech Eng 119:325–340

    Article  MATH  Google Scholar 

  18. Sze KY, Yi S, Tay MH (1997) An explicit hybrid stabilized eighteen-node solid element for thin shell analysis. Int J Numer Methods Eng 40:1839–1856

    Article  Google Scholar 

  19. Sze KY, Wu D (2011) Transition finite element families for adaptive analysis of axisymmetric elasticity problems. Finite Elem Anal Des 47:360–372

    Article  MathSciNet  Google Scholar 

  20. Jog CS, Annabattula R (2006) The development of hybrid axisymmetric elements based on the Hellinger-Reissner variational principle. Int J Numer Methods Eng 65:2279–2291

    Article  MATH  Google Scholar 

  21. Malkus DS, Hughes TJR (1978) Mixed finite element methods–reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15:63–81

    Article  MATH  Google Scholar 

  22. Brito KD, Sprague MA (2012) Reissner-Mindlin Legendre spectral finite elements with mixed reduced quadrature. Finite Elem Anal Des 58:74–83

    Article  MathSciNet  Google Scholar 

  23. Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276

    Article  MATH  Google Scholar 

  24. Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279–301

    Article  MATH  MathSciNet  Google Scholar 

  25. Sze KY, Fan H, Chow CL (1995) Elimination of spurious pressure and kinematic modes in biquadratic nine-node plane element. Int J Numer Methods Eng 38:3911–3932

    Article  MATH  MathSciNet  Google Scholar 

  26. Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48:79–109

    Article  MATH  Google Scholar 

  27. Gruttmann F, Wagner W (2004) A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element. Int J Numer Methods Eng 61:2273–2295

    Article  MATH  Google Scholar 

  28. Sze KY, Zheng SJ, Lo SH (2004) A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem Anal Des 40:319–340

    Article  Google Scholar 

  29. Liu GH, Sze KY (2010) Axisymmetric quadrilateral elements for large deformation hyperelastic analysis. Int J Mech Mater Des 6:197–207

    Article  Google Scholar 

  30. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MATH  MathSciNet  Google Scholar 

  31. Korelc J, Wriggers P (1996) Consistent gradient formulation for a stable enhanced strain method for large deformations. Eng Comput 13:103–123

    Article  Google Scholar 

  32. Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14:759–791

    Article  MATH  Google Scholar 

  33. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: part I: geometrically linear problems. Comput Struct 75:237–250

    Article  Google Scholar 

  34. Romero I, Bischoff M (2007) Incompatible bubbles: a non-conforming finite element formulation for linear elasticity. Comput Methods Appl Mech Eng 196:1662–1672

    Article  MATH  MathSciNet  Google Scholar 

  35. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1–27

    Article  Google Scholar 

  36. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York

    Google Scholar 

  37. Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  38. Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  39. Sani RL, Gresho PM, Lee RL, Griffiths DF (1981) The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: part 1. Int J Numer Methods Fluids 1:17–43

    Article  MATH  MathSciNet  Google Scholar 

  40. Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193

    Article  Google Scholar 

  41. Achenbach JD (1973) Wave propagation in elastic solids. North-Holland, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hong Kong Research Grant Council in the form of a GRF Grant (HKU 7168 13E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Sze.

Appendix: Assembling the element stiffness matrices

Appendix: Assembling the element stiffness matrices

In this appendix, the LB and URI element stiffness matrices formed by the assembling procedure is presented. By recalling the property \(L_{i}(l_{j}) = \delta _{ij}\), the derivatives for any interpolated variable \(\phi \) at \((l_{k},l_{l})\) with respect to the parametric coordinates are

$$\begin{aligned}&\left. {\phi ,_\xi }\right| _{(\xi =l_k ,\eta =l_l )} \\&\qquad =\sum _{i,j=1}^{n+1} {{L}'_i (l_k )L_j (l_l )\phi _{ij} } =\sum _{i=1}^{n+1} {{L}'_i (l_k )\phi _{il} } \\&\qquad =\left[ {L}'_1 (l_k ),\ldots ,{L}'_n (l_k )\right] \left\{ {{\begin{array}{l} {\phi _{1l} } \\ \vdots \\ {\phi _{nl} } \\ \end{array} }} \right\} \\&\qquad =\left[ {L}'_1 (l_k ),\ldots ,{L}'_n (l_k )\right] \cdot \underline{\phi _{Ql} }, \quad \left. {\phi ,_\eta } \right| _{(\xi =l_k ,\eta =l_l )}\\&\qquad =\sum _{i,j=1}^{n+1} {L_i (l_k ){L}'_j (l_l )\phi _{ij} }\\&\qquad =\sum _{j=1}^{n+1} {{L}'_j (l_l )\phi _{kj} } =\left[ {L}'_1 (l_l ),\ldots ,{L}'_n (l_l )\right] \left\{ {{\begin{array}{l} {\phi _{k1} } \\ \vdots \\ {\phi _{kn} } \\ \end{array} }} \right\} \\&\qquad =\left[ {L}'_1 (l_l ),\ldots ,{L}'_n (l_l )\right] \cdot \underline{\phi _{Pk}} \end{aligned}$$

in which \(\underline{{\phi }_{Pi}}\) and \(\underline{{\phi }_{Qi}}\) are respectively the vectors containing the nodal values of \(\phi \) in the following Lobatto node sets:

$$\begin{aligned} Pi= & {} \{(l_i ,l_1 ),(l_i ,l_2 ),\ldots ,(l_i ,l_n ),(l_i ,l_{n+1} )\}\\&\quad \hbox { for}\,i = 1,\ldots ,n+1;\\ Qi= & {} \{(l_1 ,l_i ),(l_2 ,l_i ),\ldots ,(l_n ,l_i ),(l_{n+1} ,l_i )\}\\&\quad \hbox { for}\,i = 1,\ldots ,n+1, \end{aligned}$$

see Fig. 2b for illustration. Moreover, \({L}'_i (l_j )\) can be pre-computed as in the spectral and differential quadrature methods, see [35] among others. Through the chain rule of differentiation

$$\begin{aligned}&\frac{\partial }{\partial x}=\frac{1}{J}\left( \frac{\partial y}{\partial \eta }\frac{\partial }{\partial \xi }-\frac{\partial y}{\partial \xi }\frac{\partial }{\partial \eta }\right) ,\\&\quad \frac{\partial }{\partial y}=\frac{1}{J}\left( -\frac{\partial x}{\partial \eta }\frac{\partial }{\partial \xi }+\frac{\partial x}{\partial \xi }\frac{\partial }{\partial \eta }\right) \end{aligned}$$

where \(J = (\partial x/\partial \xi )(\partial y/\partial \eta )-(\partial y/\partial \xi )(\partial x/\partial \eta )\) is the Jacobian determinant, the strain component at the Lobatto node (ij) can be expressed as:

$$\begin{aligned} \underline{\varepsilon _{ij} }= & {} \left. {\left\{ {{\begin{array}{l} {\varepsilon _x } \\ {\varepsilon _y } \\ {\gamma _{xy} } \\ \end{array} }} \right\} } \right| _{(\xi =l_i ,\eta =l_j )} =\left. {\left\{ {{\begin{array}{l} {u,_x } \\ {v,_y } \\ {u,_y +v,_x } \\ \end{array} }} \right\} } \right| _{(\xi =l_i ,\eta =l_j )}\\= & {} \underline{\underline{B_{PiQj}}} \underline{d_{PiQj} } \end{aligned}$$

where \(\underline{\underline{B_{PiQj}}}\) is the strain-displacement matrix for node (ij) with respect to \({\underline{d_{PiQj}}}\) which is vector containing the \(2(2n+1)\) nodal displacement components in the node sets Pi and Qj. Using the LBQ rule in which the integration points are the Lobatto nodes, the strain energy in the element can be expressed as:

$$\begin{aligned}&\frac{1}{2}\left\langle \underline{\varepsilon }^{T}\underline{\underline{C}} \underline{\varepsilon }\right\rangle _{{ LBQ}}^e =\frac{1}{2}\sum _{i,j=1}^{n+1} {\left( w_i w_j J_{ij} \underline{\varepsilon _{ij}^T }{\underline{\underline{C}}} \underline{\varepsilon _{ij}}\right) } \\&\quad =\frac{1}{2}\sum _{i,j=1}^{n+1} {\left( w_i w_j J_{ij} \underline{d_{PiQj}^T }\underline{\underline{B_{PiQj}^T }} {\underline{\underline{C}}} \underline{\underline{B_{PiQj}}} \underline{d_{PiQj}}\right) } \\&\quad =\frac{1}{2}\underline{d}^T \underline{\underline{k_{{ LB}}}} \underline{d} \end{aligned}$$

where \(w_{i}\) is the weight factor for the Lobatto node \(l_{i},J_{ij} =\left. J \right| _{(\xi =l_i ,\eta =l_j )} \). As dim.(\(\underline{\underline{B_{PiQj}^T }} {\underline{\underline{C}}} \underline{\underline{B_{PiQj}}}) = 2(2n+1)\times 2(2n+1)\) is smaller or much smaller than dim. \((\underline{\underline{k_{{ LB}}}}) = 2(n+1)^{2}\times 2(n+1)^{2}\), the process of forming \(\underline{\underline{k_{{ LB}}}}\) from \(\underline{\underline{B_{PiQj}^T }} \underline{\underline{C}} \underline{\underline{B_{PiQj}}}\) can be speeded up by using matrix assembling which is similar to that used in forming the system matrix from the element matrices.

For the URI element, the derivatives for any variable \(\phi \) at RGQ point \((g_{k},g_{l})\) with respect to the parametric coordinates are

$$\begin{aligned}&\left. {\phi ,_\xi } \right| _{\xi =g_k ,\eta =g_l } =\sum _{i,j=1}^{n+1} {{L}'_i (g_k )L_j (g_l )\phi _{ij} }, \nonumber \\&\quad \left. {\phi ,_\eta } \right| _{\xi =g_k ,\eta =g_l } =\sum _{i,j=1}^{n+1} {L_i (g_k ){L}'_j (g_l )\phi _{ij} } \end{aligned}$$
(50)

As

$$\begin{aligned}&\left. \phi \right| _{\xi =l_i ,\eta =g_l } =\sum _{m,j=1}^{n+1} {L_m (l_i )L_j (g_l )\phi _{ij} } =\sum _{j=1}^{n+1} {L_j (g_l )\phi _{ij} } \quad \hbox { and}\nonumber \\&\quad \left. \phi \right| _{\xi =g_k ,\eta =l_j } =\sum _{i,m=1}^{n+1} {L_i (g_k )L_m (l_j )\phi _{im} } =\sum _{i=1}^{n+1} {L_i (g_k)\phi _{ij}},\nonumber \\ \end{aligned}$$
(51)

Eq. (50) can be expressed as

$$\begin{aligned} \left. {\phi ,_\xi } \right| _{\xi =g_k ,\eta =g_l }= & {} \sum _{i=1}^{n+1} {{L}'_i (g_k )\left. \phi \right| _{\xi =l_i ,\eta =g_l } } \\= & {} \left[ {L}'_1 (g_k ),\ldots , {L}'_n (g_k )\right] \left\{ {{\begin{array}{l} {\left. \phi \right| _{\xi =l_1 ,\eta =g_l } } \\ \vdots \\ {\left. \phi \right| _{\xi =l_n ,\eta =g_l } } \\ \end{array} }} \right\} \\= & {} \left[ {L}'_1 (g_k ),\ldots ,{L}'_n (g_k )\right] \cdot \underline{\phi _{{\mathop {Q}\limits ^{\frown }} l} },\\ \left. {\phi ,_\eta } \right| _{\xi =g_k ,\eta =g_l }= & {} \sum _{j=1}^{n+1} {{L}'_j (g_l )\left. \phi \right| _{\xi =g_k ,\eta =l_j } }\\= & {} \left[ {L}'_1 (g_l ),\ldots ,{L}'_n (g_l )\right] \left\{ {{\begin{array}{l} {\left. \phi \right| _{\xi =g_k ,\eta =l_1 } } \\ \vdots \\ {\left. \phi \right| _{\xi =g_k ,\eta =l_n } } \\ \end{array} }} \right\} \\= & {} \left[ {L}'_1 (g_l ),\ldots ,{L}'_n (g_l )\right] \cdot \underline{\phi _{{\mathop {P}\limits ^{\frown }} k} } \end{aligned}$$

It can be seen that \({\mathop {P}\limits ^{\frown }} i\) and \({\mathop {Q}\limits ^{\frown }} i\) are respectively the vectors containing the values of the following auxiliary node sets:

$$\begin{aligned} {\mathop {P}\limits ^{\frown }} i= & {} \{(g_i ,l_1 ),(g_i ,l_2 ),\ldots ,(g_i ,l_n ),(g_i ,l_{n+1} )\}\nonumber \\&\mathrm{for}\, i = 1,\ldots ,n,\\ {\mathop {Q}\limits ^{\frown }} i= & {} \{(l_1 ,g_i ),(l_2 ,g_i ),\ldots ,(l_n ,g_i ),(l_{n+1} ,g_i )\}\nonumber \\&\mathrm{for}\, i = 1,\ldots ,n. \end{aligned}$$

see Fig. 2c for illustration. Again, \({L}'_i (g_j )\) can be pre-computed. Similar to the standard Lobatto element, the strain components at each RGQ point and the strain energy of the element can be expressed as:

$$\begin{aligned} \underline{{\mathop {\varepsilon }\limits ^{\frown }}_{ij} }= & {} \left. {\left\{ {{\begin{array}{l} {\varepsilon _x} \\ {\varepsilon _y} \\ {\gamma _{xy} } \\ \end{array} }} \right\} } \right| _{(\xi =g_i ,\eta =g_j )} =\left. {\left\{ {{\begin{array}{l} {u,_x } \\ {v,_y } \\ {u,_y +v,_x } \\ \end{array} }} \right\} } \right| _{(\xi =g_i ,\eta =g_j )} \nonumber \\= & {} \underline{\underline{\mathop {\mathop {B}\limits ^{\frown }}\nolimits _{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }} j} }} \underline{d_{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }} j} }, \end{aligned}$$
$$\begin{aligned} \frac{1}{2}\left\langle \underline{\varepsilon }^{T}\underline{\underline{C}} \underline{\varepsilon }\right\rangle _{{ RGQ}}^e= & {} \frac{1}{2}\sum _{i,j=1}^n {\left( \mathop {\mathop {w}\limits ^{\frown }}\nolimits _i \mathop {\mathop {w}\limits ^{\frown }}\nolimits _j \mathop {\mathop {J}\limits ^{\frown }}\nolimits _{ij} \underline{{\mathop {\varepsilon }\limits ^{\frown }}_{ij}^T }{\underline{\underline{C}}} \underline{{\mathop {\varepsilon }\limits ^{\frown }}_{ij}}\right) } \nonumber \\= & {} \frac{1}{2}\sum _{i=1}^n {\left( \mathop {\mathop {w}\limits ^{\frown }}\nolimits _i \mathop {\mathop {w}\limits ^{\frown }}\nolimits _j \mathop {\mathop {J}\limits ^{\frown }}\nolimits _{ij} \underline{d_{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }}j}^T }\underline{\underline{{\mathop {B}\limits ^{\frown }} _{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }}j}^T }} {\underline{\underline{C}}} \underline{\underline{\mathop {\mathop {B}\limits ^{\frown }}\nolimits _{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }} j}}} \underline{d_{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }}j}}\right) } \nonumber \\= & {} \frac{1}{2}\underline{{\mathop {d}\limits ^{\frown }}}^T \underline{\underline{{\mathop {k}\limits ^{\frown }}}} \underline{{\mathop {d}\limits ^{\frown }}} \end{aligned}$$
(52)

where \(\underline{\underline{{\mathop {B}\limits ^{\frown }} _{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }} j}}}\) is the strain-displacement matrix for the RGQ point \((g_{i},g_{j})\) with respect to \(\underline{d_{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }}j}}\) which is vector containing the \(4(n+1)\) displacement components in the auxiliary node sets \({\mathop {P}\limits ^{\frown }} i\) and \({\mathop {Q}\limits ^{\frown }} j,\mathop {\mathop {J}\limits ^{\frown }}\nolimits _{ij} =\left. J \right| _{(\xi =g_i ,\eta =g_j )}\) and \(\underline{{\mathop {d}\limits ^{\frown }} }\) is vector containing the \(4n(n+1)\) displacement components in the auxiliary node sets \({\mathop {P}\limits ^{\frown }} i\) and \({\mathop {Q}\limits ^{\frown }} i\) for \(i = 1,..,n\). Again, \(\underline{\underline{{\mathop {k}\limits ^{\frown }}}} \) can be assembled from \(\underline{\underline{{\mathop {B}\limits ^{\frown }} _{{\mathop {P}\limits ^{\frown }}i{\mathop {Q}\limits ^{\frown }}j}^T}} {\underline{\underline{C}}} \underline{\underline{\mathop {\mathop {B}\limits ^{\frown }}\nolimits _{{\mathop {P}\limits ^{\frown }} i{\mathop {Q}\limits ^{\frown }} j}}}\). To derive the element stiffness matrix, the relation between the nodes and auxiliary nodes can be expressed as:

$$\begin{aligned} \underline{{\mathop {d}\limits ^{\frown }} }=\underline{\underline{T_a}} \underline{d} \end{aligned}$$
(53)

in which \(\underline{\underline{T_{a}}}\) is a sparse transformation matrix with \(n+1\) non-zero entries per row. From (52) and (53), the stiffness matrix of the URI element is

$$\begin{aligned} \underline{\underline{k_{{ URI}}}} =\underline{\underline{T_a}}^T \underline{\underline{{\mathop {k}\limits ^{\frown }}}} \underline{\underline{T_a}}. \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y.C., Sze, K.Y. & Zhou, Y.X. Stabilized plane and axisymmetric Lobatto finite element models. Comput Mech 56, 879–903 (2015). https://doi.org/10.1007/s00466-015-1207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1207-5

Keywords

Navigation