Advertisement

Pressurized intraperitoneal aerosol chemotherapy (PIPAC) might increase the risk of anastomotic leakage compared to HIPEC: an experimental study

  • Clément Tavernier
  • Guillaume Passot
  • Oliva Vassal
  • Bernard Allaouchiche
  • Evelyne Decullier
  • Naoual Bakrin
  • Mohammad Alyami
  • Axel Davigo
  • Jeanne-Marie Bonnet
  • Vanessa Louzier
  • Christian Paquet
  • Olivier Glehen
  • Vahan KepenekianEmail author
Article

Abstract

Background

Pressurized intraperitoneal aerosol chemotherapy (PIPAC) and hyperthermic intraperitoneal chemotherapy (HIPEC) are technics proposed to treat patients with peritoneal carcinomatosis, in different settings. There is some concern about an over-risk of anastomotic leakage (AL) with PIPAC jeopardizing a combination with cytoreductive surgery. This study used a healthy swine model to compare the postoperative AL rate between PIPAC and HIPEC with digestive resection and to analyze macrocirculation and microcirculation parameters.

Methods

Segmental colonic resection with a handsewn anastomosis was performed on 16 healthy pigs; 8 pigs had a PIPAC procedure with 7.5 mg/m2 cisplatin (PIPAC group), and 8 pigs had a closed HIPEC procedure with 70 mg/m2 cisplatin and 42 °C as the target intraperitoneal temperature (HIPEC group). Pigs were kept alive for 8 days, then sacrificed and autopsied to look for AL, which was defined as local abscess or digestive fluid leakage when pressure was applied to the anastomosis. Food intake, weight, and core temperature were monitored postoperatively. Macrocirculation (heart rate, systolic blood pressure) and microcirculation parameters (percentage of perfused vessels, perfused vessels density, DeBacker score) were evaluated intraoperatively at five timepoints. Results were compared between pigs with AL and those without.

Results

The HIPEC group had no AL, but 3 of 8 pigs (37.5%) had AL in the PIPAC group (p = 0.20). Heart rate and core temperature showed perioperative increases in the HIPEC group. Intraoperatively, heart rate was higher in the HIPEC group at the two last timepoints (123 vs. 93 bpm, p = 0.031, and 110 vs. 85 bpm, p = 0.010, at timepoints 3 and 4, respectively). Other macrocirculatory and microcirculatory parameters showed no significant differences.

Conclusion

In this healthy swine model, PIPAC might have increased AL incidence compared to HIPEC. This potential over-risk did not seem to be related to changes in the microcirculation. PIPAC should probably not be used with digestive resection and should be avoided in cases of perioperative serosal injury.

Keywords

PIPAC HIPEC Fistula Microcirculation Macrocirculation 

Notes

Funding

This study was supported by an Antonin Poncet Grant from Lyon University (Grant number:2016/17).

Compliance with ethical standards

Disclosures

Drs. Clément Tavernier, Guillaume Passot, Oliva Vassal, Bernard Allaouchiche, Evelyne Decullier, Naoual Bakrin, Mohammad Alyami, Axel Davigo, Jeanne-Marie Bonnet, Vanessa Louzier, Christian Paquet, Olivier Glehen, and Vahan Kepenekian have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Franko J, Shi Q, Meyers JP, Maughan TS, Adams RA, Seymour MT, Saltz L, Punt CJA, Koopman M, Tournigand C, Tebbutt NC, Díaz-Rubio E, Souglakos J, Falcone A, Chibaudel B, Heinemann V, Moen J, De Gramont A, Sargent DJ, Grothey A, Analysis and Research in Cancers of the Digestive System (ARCAD) Group (2016) Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the analysis and research in cancers of the digestive system (ARCAD) database. Lancet Oncol 17:1709–1719.  https://doi.org/10.1016/s1470-2045(16)30500-9 CrossRefPubMedGoogle Scholar
  2. 2.
    van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT, van der Velden J, Arts HJ, Massuger LFAG, Aalbers AGJ, Verwaal VJ, Kieffer JM, Van de Vijver KK, van Tinteren H, Aaronson NK, Sonke GS (2018) Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med 378:230–240.  https://doi.org/10.1056/NEJMoa1708618 CrossRefPubMedGoogle Scholar
  3. 3.
    Chua TC, Moran BJ, Sugarbaker PH, Levine EA, Glehen O, Gilly FN, Baratti D, Deraco M, Elias D, Sardi A, Liauw W, Yan TD, Barrios P, Gómez Portilla A, de Hingh IHJT, Ceelen WP, Pelz JO, Piso P, González-Moreno S, Van Der Speeten K, Morris DL (2012) Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol 30:2449–2456.  https://doi.org/10.1200/JCO.2011.39.7166 CrossRefPubMedGoogle Scholar
  4. 4.
    Elias D, Gilly F, Boutitie F, Quenet F, Bereder J-M, Mansvelt B, Lorimier G, Dubè P, Glehen O (2010) Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol 28:63–68.  https://doi.org/10.1200/JCO.2009.23.9285 CrossRefPubMedGoogle Scholar
  5. 5.
    Yan TD, Deraco M, Baratti D, Kusamura S, Elias D, Glehen O, Gilly FN, Levine EA, Shen P, Mohamed F, Moran BJ, Morris DL, Chua TC, Piso P, Sugarbaker PH (2009) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J Clin Oncol 27:6237–6242.  https://doi.org/10.1200/JCO.2009.23.9640 CrossRefPubMedGoogle Scholar
  6. 6.
    Smeenk RM, Verwaal VJ, Zoetmulder FAN (2007) Learning curve of combined modality treatment in peritoneal surface disease. Br J Surg 94:1408–1414.  https://doi.org/10.1002/bjs.5863 CrossRefPubMedGoogle Scholar
  7. 7.
    Dedrick RL, Flessner MF (1997) Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer Inst 89:480–487CrossRefPubMedGoogle Scholar
  8. 8.
    Baratti D, Kusamura S, Iusco D, Bonomi S, Grassi A, Virzì S, Leo E, Deraco M (2014) Postoperative complications after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy affect long-term outcome of patients with peritoneal metastases from colorectal cancer: a two-center study of 101 patients. Dis Colon Rectum 57:858–868.  https://doi.org/10.1097/DCR.0000000000000149 CrossRefPubMedGoogle Scholar
  9. 9.
    Levine EA, Stewart JH, Russell GB, Geisinger KR, Loggie BL, Shen P (2007) Cytoreductive surgery and intraperitoneal hyperthermic chemotherapy for peritoneal surface malignancy: experience with 501 procedures. ACS 204:943–953.  https://doi.org/10.1016/j.jamcollsurg.2006.12.048 (Discussion 953–955) CrossRefGoogle Scholar
  10. 10.
    Solass W, Hetzel A, Nadiradze G, Sagynaliev E, Reymond MA (2012) Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc 26:1849–1855.  https://doi.org/10.1007/s00464-012-2148-0 CrossRefPubMedGoogle Scholar
  11. 11.
    Blanco A, Giger-Pabst U, Solass W, Zieren J, Reymond MA (2013) Renal and hepatic toxicities after pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol 20:2311–2316.  https://doi.org/10.1245/s10434-012-2840-2 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Solass W, Giger-Pabst U, Zieren J, Reymond MA (2013) Pressurized intraperitoneal aerosol chemotherapy (PIPAC): occupational health and safety aspects. Ann Surg Oncol 20:3504–3511.  https://doi.org/10.1245/s10434-013-3039-x CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Odendahl K, Solass W, Demtröder C, Giger-Pabst U, Zieren J, Tempfer C, Reymond MA (2015) Quality of life of patients with end-stage peritoneal metastasis treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Eur J Surg Oncol 41:1379–1385.  https://doi.org/10.1016/j.ejso.2015.06.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Tempfer CB, Celik I, Solass W, Buerkle B, Pabst UG, Zieren J, Strumberg D, Reymond M-A (2014) Activity of pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in women with recurrent, platinum-resistant ovarian cancer: preliminary clinical experience. Gynecol Oncol 132:307–311.  https://doi.org/10.1016/j.ygyno.2013.11.022 CrossRefPubMedGoogle Scholar
  15. 15.
    Grass F, Vuagniaux A, Teixeira-Farinha H, Lehmann K, Demartines N, Hübner M (2017) Systematic review of pressurized intraperitoneal aerosol chemotherapy for the treatment of advanced peritoneal carcinomatosis. Br J Surg 104:669–678.  https://doi.org/10.1002/bjs.10521 CrossRefPubMedGoogle Scholar
  16. 16.
    Robella M, Vaira M, De Simone M (2016) Safety and feasibility of pressurized intraperitoneal aerosol chemotherapy (PIPAC) associated with systemic chemotherapy: an innovative approach to treat peritoneal carcinomatosis. World J Surg Oncol 14:128.  https://doi.org/10.1186/s12957-016-0892-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Solass W, Kerb R, Mürdter T, Giger-Pabst U, Strumberg D, Tempfer C, Zieren J, Schwab M, Reymond M-A (2014) Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol 21:553–559.  https://doi.org/10.1245/s10434-013-3213-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Karliczek A, Benaron DA, Baas PC, Zeebregts CJ, Wiggers T, Van Dam GM (2010) Intraoperative assessment of microperfusion with visible light spectroscopy for prediction of anastomotic leakage in colorectal anastomoses. Colorectal Dis 12:1018–1025.  https://doi.org/10.1111/j.1463-1318.2009.01944.x CrossRefPubMedGoogle Scholar
  19. 19.
    De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, Dobbe I, Ince C (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11(5):R101CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Teixeira Farinha H, Grass F, Kefleyesus A, Achtari C, Romain B, Montemurro M, Demartines N, Hübner M (2017) Impact of pressurized intraperitoneal aerosol chemotherapy on quality of life and symptoms in patients with peritoneal carcinomatosis: a retrospective cohort study. Gastroenterol Res Pract 2017:4596176.  https://doi.org/10.1155/2017/4596176 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Trencheva K, Morrissey KP, Wells M, Mancuso CA, Lee SW, Sonoda T, Michelassi F, Charlson ME, Milsom JW (2013) Identifying important predictors for anastomotic leak after colon and rectal resection: prospective study on 616 patients. Ann Surg 257:108–113.  https://doi.org/10.1097/SLA.0b013e318262a6cd CrossRefPubMedGoogle Scholar
  22. 22.
    Park JS, Choi G-S, Kim SH, Kim HR, Kim NK, Lee KY, Kang SB, Kim JY, Lee KY, Kim BC, Bae BN, Son GM, Lee SI, Kang H (2013) Multicenter analysis of risk factors for anastomotic leakage after laparoscopic rectal cancer excision: the Korean laparoscopic colorectal surgery study group. Ann Surg 257:665–671.  https://doi.org/10.1097/SLA.0b013e31827b8ed9 CrossRefPubMedGoogle Scholar
  23. 23.
    Lou Z, Liu Q, Meng R, Gong H, Hao L, Liu P, Sun G, Ma J, Zhang W (2017) Multicenter analysis of risk factors for anastomotic leakage after middle and low rectal cancer resection without diverting stoma: a retrospective study of 319 consecutive patients. Int J Colorectal Dis 32:1431–1437.  https://doi.org/10.1007/s00384-017-2875-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Salusjärvi JM, Carpelan-Holmström MA, Louhimo JM, Kruuna O, Scheinin TM (2018) Intraoperative colonic pulse oximetry in left-sided colorectal surgery: can it predict anastomotic leak? Int J Colorectal Dis 33:333–336.  https://doi.org/10.1007/s00384-018-2963-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Chung RS (1987) Blood flow in colonic anastomoses. Effect of stapling and suturing. Ann Surg 206:335–339CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vignali A, Gianotti L, Braga M, Radaelli G, Malvezzi L, Di Carlo V (2000) Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum 43:76–82CrossRefPubMedGoogle Scholar
  27. 27.
    Casado-Adam Á, Alderman R, Stuart OA, Chang D, Sugarbaker PH (2011) Gastrointestinal complications in 147 consecutive patients with peritoneal surface malignancy treated by cytoreductive surgery and perioperative intraperitoneal chemotherapy. Int J Surg Oncol 2011:468698.  https://doi.org/10.1155/2011/468698 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jung DH, Son SY, Oo AM, Park YS, Shin DJ, Ahn S-H, Park DJ, Kim H-H (2016) Feasibility of hyperthermic pressurized intraperitoneal aerosol chemotherapy in a porcine model. Surg Endosc 30:4258–4264.  https://doi.org/10.1007/s00464-015-4738-0 CrossRefGoogle Scholar
  29. 29.
    Solass W, Herbette A, Schwarz T, Hetzel A, Sun J-S, Dutreix M, Reymond MA (2011) Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination with capnoperitoneum: proof of concept. Surg Endosc 26:847–852.  https://doi.org/10.1007/s00464-011-1964-y CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Boerma EC, van der Voort PHJ, Spronk PE, Ince C (2007) Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 35:1055–1060.  https://doi.org/10.1097/01.CCM.0000259527.89927.F9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Clément Tavernier
    • 1
    • 2
  • Guillaume Passot
    • 1
    • 2
  • Oliva Vassal
    • 3
  • Bernard Allaouchiche
    • 3
    • 4
  • Evelyne Decullier
    • 5
  • Naoual Bakrin
    • 1
    • 2
  • Mohammad Alyami
    • 1
    • 2
  • Axel Davigo
    • 1
    • 2
  • Jeanne-Marie Bonnet
    • 4
  • Vanessa Louzier
    • 4
  • Christian Paquet
    • 4
  • Olivier Glehen
    • 1
    • 2
  • Vahan Kepenekian
    • 1
    • 2
    Email author
  1. 1.Department of Digestive SurgeryLyon-Sud University HospitalLyonFrance
  2. 2.EMR 3738, Lyon 1 UniversityLyonFrance
  3. 3.Department of Intensive CareLyon-Sud University HospitalLyonFrance
  4. 4.University of Lyon, VetAgro Sup, APCSeMarcy l’ÉtoileFrance
  5. 5.Pole IMERLyonFrance

Personalised recommendations