Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy

  • Hannes Köhler
  • Boris Jansen-Winkeln
  • Marianne Maktabi
  • Manuel Barberio
  • Jonathan Takoh
  • Nico Holfert
  • Yusef Moulla
  • Stefan Niebisch
  • Michele Diana
  • Thomas Neumuth
  • Sebastian M. Rabe
  • Claire Chalopin
  • Andreas Melzer
  • Ines GockelEmail author



Hyperspectral imaging (HSI) is a relatively new method used in image-guided and precision surgery, which has shown promising results for characterization of tissues and assessment of physiologic tissue parameters. Previous methods used for analysis of preconditioning concepts in patients and animal models have shown several limitations of application. The aim of this study was to evaluate HSI for the measurement of ischemic conditioning effects during esophagectomy.


Intraoperative hyperspectral images of the gastric tube through the mini-thoracotomy were recorded from n = 22 patients, 14 of whom underwent laparoscopic gastrolysis and ischemic conditioning of the stomach with two-step transthoracic esophagectomy and gastric pull-up with intrathoracic anastomosis after 3–7 days. The tip of the gastric tube (later esophagogastric anastomosis) was measured with HSI. Analysis software provides a RGB image and 4 false color images representing physiologic parameters of the recorded tissue area intraoperatively. These parameters contain tissue oxygenation (StO2), perfusion—(NIR Perfusion Index), organ hemoglobin (OHI), and tissue water index (TWI).


Intraoperative HSI of the gastric conduit was possible in all patients and did not prolong the regular operative procedure due to its quick applicability. In particular, the tissue oxygenation of the gastric conduit was significantly higher in patients who underwent ischemic conditioning (\({\overline {{{\text{St}}{{\text{O}}_2}}} _{_{{{\text{Precond}}.}}}}\) = 78%; \({\overline {{{\text{St}}{{\text{O}}_2}}} _{_{{{\text{NoPrecond}}.}}}}\) = 66%; p = 0.03).


HSI is suitable for contact-free, non-invasive, and intraoperative evaluation of physiological tissue parameters within gastric conduits. Therefore, HSI is a valuable method for evaluating ischemic conditioning effects and may contribute to reduce anastomotic complications. Additional studies are needed to establish normal values and thresholds of the presented parameters for the gastric conduit anastomotic site.


Hyperspectral imaging Gastric conduit Esophagectomy Ischemic conditioning Physiologic tissue parameters 


Compliance with ethical standards


The hyperspectral camera used for the measurements in this publication was developed by Diaspective Vision GmbH. H. Köhler is an employee of this company. In the long term, Diaspective Vision has proprietary interest in the development of the camera system resulting in a product for routine clinical use. The clinical tests of the camera have been performed by clinicians (authors 2, 4–8, and 11). B. Jansen-Winkeln, M. Maktabi, M. Barberio, J. Takoh, N. Holfert, Y. Moulla, S. Niebisch, M. Diana, T. Neumuth, S. M. Rabe, C. Chalopin, A. Melzer, and I. Gockel have no financial interests and financial arrangements with Diaspective Vision and have received no funding for the measurements and/or preparation of this manuscript. The cameras used during the measurements have been provided by Diaspective Vision.

Ethical approval

Experimental hyperspectral measurements from patients for the evaluation of the new technology have obtained the ethics approval by the Ethics committee of the University Leipzig under 026/18-ek. The study was conducted according to the Declaration of Helsinki.


  1. 1.
    Bartels H, Siewert JR (2008) Therapie der Mediastinitis am Beispiel des Ösophaguskarzinoms. Chir 79(1):30–37Google Scholar
  2. 2.
    Veeramootoo D, Shore AC, Wajed SA (2012) Randomized controlled trial of laparoscopic gastric ischemic conditioning prior to minimally invasive esophagectomy, the LOGIC trial. Surg Endosc 26(7):1822–1829Google Scholar
  3. 3.
    Gockel I, Niebisch S, Ahlbrand CJ, Hoffmann C, Möhler M, Düber C et al (2016) Risk and complication management in esophageal cancer surgery: a review of the literature. Thorac Cardiovasc Surg 64(7):596–605Google Scholar
  4. 4.
    Pham TH, Perry KA, Enestvedt CK, Gareau D, Dolan JP, Sheppard BC et al (2011) Decreased conduit perfusion measured by spectroscopy is associated with anastomotic complications. Ann Thorac Surg 91(2):380–385Google Scholar
  5. 5.
    Markar SR, Arya S, Karthikesalingam A, Hanna GB (2013) Technical factors that affect anastomotic integrity following esophagectomy: systematic review and meta-analysis. Ann Surg Oncol 20(13):4274–4281Google Scholar
  6. 6.
    Urschel JD (1995) Ischemic conditioning of the rat stomach: implications for esophageal replacement with stomach. J Cardiovasc Surg (Torino) 36(2):191–193Google Scholar
  7. 7.
    Nguyen NT, Longoria M, Sabio A, Chalifoux S, Lee J, Chang K et al (2006) Preoperative laparoscopic ligation of the left gastric vessels in preparation for esophagectomy. Ann Thorac Surg 81(6):2318–2320Google Scholar
  8. 8.
    Hölscher AH, Schneider PM, Gutschow C, Schröder W (2007) Laparoscopic ischemic conditioning of the stomach for esophageal replacement. Ann Surg 245(2):241–246Google Scholar
  9. 9.
    Schröder W, Hölscher AH, Bludau M, Vallböhmer D, Bollschweiler E, Gutschow C (2010) Ivor-Lewis esophagectomy with and without laparoscopic conditioning of the gastric conduit. World J Surg 34(4):738–743Google Scholar
  10. 10.
    Urschel JD (1997) Ischemic conditioning of the stomach may reduce the incidence of esophagogastric anastomotic leaks complicating esophagectomy: a hypothesis. Dis Esophagus 10(3):217–219Google Scholar
  11. 11.
    Akiyama S, Ito S, Sekiguchi H, Fujiwara M, Sakamoto J, Kondo K et al (1996) Preoperative embolization of gastric arteries for esophageal cancer. Surgery 120(3):542–546Google Scholar
  12. 12.
    Akiyama S, Kodera Y, Sekiguchi H, Kasai Y, Kondo K, Ito K et al (1998) Preoperative embolization therapy for esophageal operation. J Surg Oncol 69(4):219–223Google Scholar
  13. 13.
    Isomura T, Itoh S, Endo T, Akiyama S, Maruyama K, Ishiguchi T et al (1999) Efficacy of gastric blood supply redistribution by transarterial embolization: preoperative procedure to prevent postoperative anastomotic leaks following esophagoplasty for esophageal carcinoma. Cardiovasc Intervent Radiol 22(2):119–123Google Scholar
  14. 14.
    Diana M, Hübner M, Vuilleumier H, Bize P, Denys A, Demartines N et al (2011) Redistribution of gastric blood flow by embolization of gastric arteries before esophagectomy. Ann Thorac Surg 91(5):1546–1551Google Scholar
  15. 15.
    Farran L, Miro M, Alba E, Bettonica C, Aranda H, Galan M et al (2011) Preoperative gastric conditioning in cervical gastroplasty. Dis Esophagus Off J Int Soc Dis Esophagus 24(4):205–210Google Scholar
  16. 16.
    Ghelfi J, Brichon P-Y, Frandon J, Boussat B, Bricault I, Ferretti G et al (2017) Ischemic gastric conditioning by preoperative arterial embolization before oncologic esophagectomy: a single-center experience. Cardiovasc Intervent Radiol 40(5):712–720Google Scholar
  17. 17.
    Nguyen NT, Nguyen X-MT, Reavis KM, Elliott C, Masoomi H, Stamos MJ (2012) Minimally invasive esophagectomy with and without gastric ischemic conditioning. Surg Endosc 26(6):1637–1641Google Scholar
  18. 18.
    Perry KA, Banarjee A, Liu J, Shah N, Wendling MR, Melvin WS (2013) Gastric ischemic conditioning increases neovascularization and reduces inflammation and fibrosis during gastroesophageal anastomotic healing. Surg Endosc 27(3):753–760Google Scholar
  19. 19.
    Reavis KM, Chang EY, Hunter JG, Jobe BA (2005) Utilization of the delay phenomenon improves blood flow and reduces collagen deposition in esophagogastric anastomoses. Ann Surg 241(5):736–745. (discussion 745–747)Google Scholar
  20. 20.
    Berrisford RG, Veeramootoo D, Parameswaran R, Krishnadas R, Wajed SA (2009) Laparoscopic ischaemic conditioning of the stomach may reduce gastric-conduit morbidity following total minimally invasive oesophagectomy. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg 36(5):888–893. (discussion 893)Google Scholar
  21. 21.
    Veeramootoo D, Shore AC, Shields B, Krishnadas R, Cooper M, Berrisford RG et al (2010) Ischemic conditioning shows a time-dependant influence on the fate of the gastric conduit after minimally invasive esophagectomy. Surg Endosc 24(5):1126–1131Google Scholar
  22. 22.
    Wajed SA, Veeramootoo D, Shore AC (2012) Surgical optimisation of the gastric conduit for minimally invasive oesophagectomy. Surg Endosc 26(1):271–276Google Scholar
  23. 23.
    Pierie JP, De Graaf PW, Poen H, Van der Tweel I, Obertop H (1994) Impaired healing of cervical oesophagogastrostomies can be predicted by estimation of gastric serosal blood perfusion by laser Doppler flowmetry. Eur J Surg Acta Chir 160(11):599–603Google Scholar
  24. 24.
    Monnet E, Pelsue D, Macphail C (2006) Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus. Vet Surg 35(2):198–205Google Scholar
  25. 25.
    Bludau M, Hölscher AH, Vallböhmer D, Gutschow C, Schröder W (2010) Ischemic conditioning of the gastric conduit prior to esophagectomy improves mucosal oxygen saturation. Ann Thorac Surg 90(4):1121–1126Google Scholar
  26. 26.
    Mittermair C, Klaus A, Scheidl S, Maglione M, Hermann M, Margreiter R et al (2008) Functional capillary density in ischemic conditioning: implications for esophageal resection with the gastric conduit. Am J Surg 196(1):88–92Google Scholar
  27. 27.
    Ishiguro T, Kumagai Y, Ono T, Imaizumi H, Honjo H, Suzuki O et al (2012) Usefulness of indocyanine green angiography for evaluation of blood supply in a reconstructed gastric tube during esophagectomy. Int Surg 97(4):340–344Google Scholar
  28. 28.
    Kumagai Y, Ishiguro T, Haga N, Kuwabara K, Kawano T, Ishida H (2014) Hemodynamics of the reconstructed gastric tube during esophagectomy: assessment of outcomes with indocyanine green fluorescence. World J Surg 38(1):138–143Google Scholar
  29. 29.
    Kitagawa H, Namikawa T, Iwabu J, Fujisawa K, Uemura S, Tsuda S et al (2018) Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy. Surg Endosc 32(4):1749–1754Google Scholar
  30. 30.
    Holmer A, Marotz J, Wahl P, Dau M, Kämmerer PW (2018) Hyperspectral imaging in perfusion and wound diagnostics—methods and algorithms for the determination of tissue parameters. Biomed Eng Biomed Tech 63(5):547–556Google Scholar
  31. 31.
    Panasyuk SV, Yang S, Faller DV, Ngo D, Lew RA, Freeman JE et al (2007) Medical hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol Ther 6(3):439–446Google Scholar
  32. 32.
    Akbari H, Uto K, Kosugi Y, Kojima K, Tanaka N (2011) Cancer detection using infrared hyperspectral imaging. Cancer Sci 102(4):852–857Google Scholar
  33. 33.
    Kumashiro R, Konishi K, Chiba T, Akahoshi T, Nakamura S, Murata M et al (2016) Integrated endoscopic system based on optical imaging and hyperspectral data analysis for colorectal cancer detection. Anticancer Res 8:3925–3932Google Scholar
  34. 34.
    Lu G, Little JV, Wang X, Zhang H, Patel MR, Griffith CC et al (2017) Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. Clin Cancer Res 23(18):5426–5436Google Scholar
  35. 35.
    Beaulieu RJ, Goldstein SD, Singh J, Safar B, Banerjee A, Ahuja N (2018) Automated diagnosis of colon cancer using hyperspectral sensing. Int J Med Robot 14(3):e1897Google Scholar
  36. 36.
    Ortega S, Fabelo H, Camacho R, de la Luz Plaza M, Callicó GM, Sarmiento R (2018) Detecting brain tumor in pathological slides using hyperspectral imaging. Biomed Opt Express 9(2):818Google Scholar
  37. 37.
    Holmer A, Tetschke F, Marotz J, Malberg H, Markgraf W, Thiele C et al (2016) Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas 1;37(11):2064–2078Google Scholar
  38. 38.
    Daeschlein G, Langner I, Wild T, von Podewils S, Sicher C, Kiefer T et al (2017) Hyperspectral imaging as a novel diagnostic tool in microcirculation of wounds. Jünger M, Krüger-Genge A, Jung F, editors. Clin Hemorheol Microcirc 67(3–4):467–74Google Scholar
  39. 39.
    Kulcke A, Holmer A, Wahl P, Siemers F, Wild T, Daeschlein G (2018) A compact hyperspectral camera for measurement of perfusion parameters in medicine. Biomed Tech (Berl)Google Scholar
  40. 40.
    Jansen-Winkeln B, Maktabi M, Takoh JP, Rabe SM, Barberio M, Köhler H et al (2018) Hyperspektral-Imaging bei gastrointestinalen Anastomosen. Chir 89(9):717–725Google Scholar
  41. 41.
    Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E (2009) Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care 32(11):2056–2061Google Scholar
  42. 42.
    Jeffcoate WJ, Clark DJ, Savic N, Rodmell PI, Hinchliffe RJ, Musgrove A et al (2015) Use of HSI to measure oxygen saturation in the lower limb and its correlation with healing of foot ulcers in diabetes. Diabet Med J Br Diabet Assoc 32(6):798–802Google Scholar
  43. 43.
    Calin MA, Coman T, Parasca SV, Bercaru N, Savastru R, Manea D (2015) Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method. J Biomed Opt 20(4):046004Google Scholar
  44. 44.
    Sakota D, Nagaoka E, Maruyama O (2015) Hyperspectral imaging of vascular anastomosis associated with blood flow and hemoglobin concentration. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2015:4246–4249Google Scholar
  45. 45.
    Urschel JD, Antkowiak JG, Delacure MD, Takita H (1997 Dec) Ischemic conditioning (delay phenomenon) improves esophagogastric anastomotic wound healing in the rat. J Surg Oncol 66(4):254–256Google Scholar
  46. 46.
    Jafari MD, Wexner SD, Martz JE, McLemore EC, Margolin DA, Sherwinter DA et al (2015) Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg 220(1):82–92.e1Google Scholar
  47. 47.
    Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V et al (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg 259(4):700–707Google Scholar
  48. 48.
    Diana M, Halvax P, Dallemagne B, Nagao Y, Diemunsch P, Charles A-L et al (2014) Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc 28(11):3108–3118Google Scholar
  49. 49.
    Diana M, Agnus V, Halvax P, Liu Y-Y, Dallemagne B, Schlagowski A-I et al (2015) Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model: Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging. Br J Surg 102(2):e169–e176Google Scholar
  50. 50.
    Keller A (2009) A new diagnostic algorithm for early prediction of vascular compromise in 208 microsurgical flaps using tissue oxygen saturation measurements. Ann Plast Surg 62(5):538–543Google Scholar
  51. 51.
    Jafari-Saraf L, Wilson SE, Gordon IL (2012 May) Hyperspectral image measurements of skin hemoglobin compared with transcutaneous PO2 measurements. Ann Vasc Surg 26(4):537–548Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hannes Köhler
    • 2
  • Boris Jansen-Winkeln
    • 1
  • Marianne Maktabi
    • 2
  • Manuel Barberio
    • 1
    • 3
  • Jonathan Takoh
    • 1
  • Nico Holfert
    • 1
  • Yusef Moulla
    • 1
  • Stefan Niebisch
    • 1
  • Michele Diana
    • 3
  • Thomas Neumuth
    • 2
  • Sebastian M. Rabe
    • 1
  • Claire Chalopin
    • 2
  • Andreas Melzer
    • 2
  • Ines Gockel
    • 1
    Email author
  1. 1.Department of Visceral, Thoracic, Transplant and Vascular surgeryUniversity Hospital of LeipzigLeipzigGermany
  2. 2.Innovation Center Computer Assisted Surgery (ICCAS)University of LeipzigLeipzigGermany
  3. 3.Institute of Image-Guided Surgery (IHU)IRCADStrasbourgFrance

Personalised recommendations