Discrimination between arterial and venous bowel ischemia by computer-assisted analysis of the fluorescent signal

  • Giuseppe Quero
  • Alfonso Lapergola
  • Manuel Barberio
  • Barbara Seeliger
  • Paola Saccomandi
  • Ludovica Guerriero
  • Didier Mutter
  • Alend Saadi
  • Marc Worreth
  • Jacques Marescaux
  • Vincent Agnus
  • Michele DianaEmail author
2018 SAGES Oral



Arterial blood supply deficiency and venous congestion both play a role in anastomotic complications. Our aim was to evaluate a software-based analysis of the fluorescence signal to recognize the patterns of bowel ischemia.


In 18 pigs, two clips were applied on the inferior mesenteric artery (group A: n = 6) or vein (group V: n = 6) or on both (group A–V: n = 6). Three regions of interest (ROIs) were identified on the sigmoid: P = proximal to the first clip; C = central, between the two clips; and D = distal to the second clip. Indocyanine Green was injected intravenously. The fluorescence signal was captured by means of a near-infrared laparoscope. The time-to-peak (seconds) and the maximum fluorescence intensity were recorded using software. A normalized fluorescence intensity unit (NFIU: 0-to-1) was attributed, using a reference card. The NFIU’s over-time variations were computed every 10 min for 50 min. Capillary lactates were measured on the sigmoid at the 3 ROIs. Various machine learning algorithms were applied for ischemia patterns recognition.


The time-to-peak at the ischemic ROI C was significantly longer in group A versus V (20.1 ± 13 vs. 8.43 ± 3.7; p = 0.04) and in group A–V versus V (20.71 ± 11.6 vs. 8.43 ± 3.7; p = 0.03). The maximal NIFU at ROI C, was higher in the V group (1.01 ± 0.21) when compared to A (0.61 ± 0.11; p = 0.002) and A–V (0.41 ± 0.2; p = 0.0005). Capillary lactates at ROI C were lower in V (1.3 ± 0.6) than in A (1.9 ± 0.5; p = 0.0071), and A–V (2.6 ± 1.5; p = 0.034). The K nearest neighbor and the Linear SVM algorithms provided both an accuracy of 75% in discriminating between A versus V and 85% in discriminating A versus A–V. The accuracy dropped to 70% when the ML had to identify the ROI and the type of ischemia simultaneously.


The computer-assisted dynamic analysis of the fluorescence signal enables the discrimination between different bowel ischemia models.


Fluorescence angiography Fluorescence-based Enhanced Reality Computer-assisted analysis of fluorescence signal Tissue perfusion Machine learning 



Authors are grateful to Christopher Burel, professional in Medical English proofreading for his assistance with the manuscript revision.


This study was funded by the ARC Foundation for Cancer Research, a French foundation entirely dedicated to cancer research, in the framework of a large project (ELIOS: Endoscopic Luminescent Imaging for precision Oncologic Surgery) aiming at the development of fluorescence-guided surgery.

Compliance with ethical standards


Michele Diana is the recipient of the ELIOS grant from the ARC foundation. Jacques Marescaux is the President of both IRCAD and IHU-Strasbourg Institutes, which are partly funded by Karl Storz, Medtronic and Siemens Healthcare. Giuseppe Quero, Alfonso Lapergola, Manuel Barberio, Barbara Seeliger, Ines Gockel, Paola Saccomandi, Ludovica Guierriero, Didier Mutter, Alend Saadi, Marc Worreth and Vincent Agnus have no conflicts of interest or financial ties to disclose.


  1. 1.
    van Manen L, Handgraaf HJM, Diana M, Dijkstra J, Ishizawa T, Vahrmeijer AL, Mieog JSD (2018) A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol 118:283–300CrossRefGoogle Scholar
  2. 2.
    Degett TH, Andersen HS, Gogenur I (2016) Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg 401:767–775CrossRefGoogle Scholar
  3. 3.
    Blanco-Colino R, Espin-Basany E (2018) Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol 22:15–23CrossRefGoogle Scholar
  4. 4.
    Ohi M, Toiyama Y, Mohri Y, Saigusa S, Ichikawa T, Shimura T, Yasuda H, Okita Y, Yoshiyama S, Kobayashi M, Araki T, Inoue Y, Kusunoki M (2017) Prevalence of anastomotic leak and the impact of indocyanine green fluorescein imaging for evaluating blood flow in the gastric conduit following esophageal cancer surgery. Esophagus 14:351–359CrossRefGoogle Scholar
  5. 5.
    Karampinis I, Keese M, Jakob J, Stasiunaitis V, Gerken A, Attenberger U, Post S, Kienle P, Nowak K (2018) Indocyanine green tissue angiography can reduce extended bowel resections in acute mesenteric ischemia. J Gastrointest Surg. Google Scholar
  6. 6.
    Liot E, Assalino M, Buchs NC, Schiltz B, Douissard J, Morel P, Ris F (2018) Does near-infrared (NIR) fluorescence angiography modify operative strategy during emergency procedures? Surg Endosc. Google Scholar
  7. 7.
    Diana M, Agnus V, Halvax P, Liu YY, Dallemagne B, Schlagowski AI, Geny B, Diemunsch P, Lindner V, Marescaux J (2015) Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg 102:e169–e176CrossRefGoogle Scholar
  8. 8.
    Diana M, Dallemagne B, Chung H, Nagao Y, Halvax P, Agnus V, Soler L, Lindner V, Demartines N, Diemunsch P, Geny B, Swanstrom L, Marescaux J (2014) Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia. Surg Endosc 28:3224–3233CrossRefGoogle Scholar
  9. 9.
    Diana M, Halvax P, Dallemagne B, Nagao Y, Diemunsch P, Charles AL, Agnus V, Soler L, Demartines N, Lindner V, Geny B, Marescaux J (2014) Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc 28:3108–3118CrossRefGoogle Scholar
  10. 10.
    Diana M, Noll E, Agnus V, Liu YY, Kong SH, Legner A, Diemunsch P, Marescaux J (2017) Reply to letter: “enhanced reality fluorescence videography to assess bowel perfusion: the cybernetic eye”. Ann Surg 265:e49–e52CrossRefGoogle Scholar
  11. 11.
    Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V, Soler L, Barry B, Namer IJ, Demartines N, Charles AL, Geny B, Marescaux J (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg 259:700–707CrossRefGoogle Scholar
  12. 12.
    Lee KT, Mun GH (2017) Benefits of superdrainage using SIEV in DIEP flap breast reconstruction: a systematic review and meta-analysis. Microsurgery 37:75–83CrossRefGoogle Scholar
  13. 13.
    Fujioka M, Hayashida K, Fukui K, Ishiyama S, Saijo H, Taniguchi K (2017) Venous superdrained gastric tube pull-up procedure for hypopharyngeal and cervical esophageal reconstruction reduces postoperative anastomotic leakage and stricture. Dis Esophagus 30:1–6CrossRefGoogle Scholar
  14. 14.
    Wang WL (2017) Venous congestion in ischemic bowel. N Engl J Med 377:e10CrossRefGoogle Scholar
  15. 15.
    Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Gene Med 12:561–563CrossRefGoogle Scholar
  16. 16.
    Diana M, Halvax P, Pop R, Schlagowski I, Bour G, Liu YY, Legner A, Diemunsch P, Geny B, Dallemagne B, Beaujeux R, Demartines N, Marescaux J (2015) Gastric supply manipulation to modulate ghrelin production and enhance vascularization to the cardia: proof of the concept in a porcine model. Surg Innov 22:5–14CrossRefGoogle Scholar
  17. 17.
    Diana M, Noll E, Legner A, Kong SH, Liu YY, Schiraldi L, Marchegiani F, Bano J, Geny B, Charles AL, Dallemagne B, Lindner V, Mutter D, Diemunsch P, Marescaux J (2018) Impact of valve-less vs. standard insufflation on pneumoperitoneum volume, inflammation, and peritoneal physiology in a laparoscopic sigmoid resection experimental model. Surg Endosc 32:3215–3224CrossRefGoogle Scholar
  18. 18.
    Pedregosa F, Gaël V, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830Google Scholar
  19. 19.
    Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice-Hall, LondonGoogle Scholar
  20. 20.
    Ris F, Liot E, Buchs NC, Kraus R, Ismael G, Belfontali V, Douissard J, Cunningham C, Lindsey I, Guy R, Jones O, George B, Morel P, Mortensen NJ, Hompes R, Cahill RA, Near-Infrared Anastomotic Perfusion Assessment Network V (2018) Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg 105:1359–1367CrossRefGoogle Scholar
  21. 21.
    Armstrong G, Croft J, Corrigan N, Brown JM, Goh V, Quirke P, Hulme C, Tolan D, Kirby A, Cahill R, O’Connell PR, Miskovic D, Coleman M, Jayne D (2018) IntAct: intra-operative fluorescence angiography to prevent anastomotic leak in rectal cancer surgery: a randomized controlled trial. Colorectal Dis. Google Scholar
  22. 22.
    Diana M (2017) Enabling precision digestive surgery with fluorescence imaging. Transl Gastroenterol Hepatol 2:97CrossRefGoogle Scholar
  23. 23.
    Diana M (2018) Fluorescence-guided surgery applied to the digestive system: the cybernetic eye to see the invisible. Cir Esp 96:65–68CrossRefGoogle Scholar
  24. 24.
    Koyanagi K, Ozawa S, Oguma J, Kazuno A, Yamazaki Y, Ninomiya Y, Ochiai H, Tachimori Y (2016) Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: new predictive evaluation of anastomotic leakage after esophagectomy. Medicine (Baltimore) 95:e4386CrossRefGoogle Scholar
  25. 25.
    Wada T, Kawada K, Takahashi R, Yoshitomi M, Hida K, Hasegawa S, Sakai Y (2017) ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surgical endoscopy 31:4184–4193CrossRefGoogle Scholar
  26. 26.
    Selka F, Agnus V, Nicolau S, Bessaid A, Soler L, Marescaux J, Diana M (2014) Fluorescence-based enhanced reality for colorectal endoscopic surgery. Biomedical Image Registration, London, pp 114–123Google Scholar
  27. 27.
    Diana M, Noll E, Diemunsch P, Moussallieh FM, Namer IJ, Charles AL, Lindner V, Agnus V, Geny B, Marescaux J (2015) Metabolism-guided bowel resection: potential role and accuracy of instant capillary lactates to identify the optimal resection site. Surg Innov 22:453–461CrossRefGoogle Scholar
  28. 28.
    Diana M, Pop R, Beaujeux R, Dallemagne B, Halvax P, Schlagowski I, Liu YY, Diemunsch P, Geny B, Lindner V, Marescaux J (2015) Embolization of arterial gastric supply in obesity (EMBARGO): an endovascular approach in the management of morbid obesity. proof of the concept in the porcine model. Obes Surg 25:550–558CrossRefGoogle Scholar
  29. 29.
    Cruz RJ Jr, Garrido AG, Ribeiro CM, Harada T, Rocha-e-Silva M (2010) Regional blood flow distribution and oxygen metabolism during mesenteric ischemia and congestion. J Surg Res 161:54–61CrossRefGoogle Scholar
  30. 30.
    Guzman-de la Garza FJ, Camara-Lemarroy CR, Alarcon-Galvan G, Cordero-Perez P, Munoz-Espinosa LE, Fernandez-Garza NE (2009) Different patterns of intestinal response to injury after arterial, venous or arteriovenous occlusion in rats. World J Gastroenterol 15:3901–3907CrossRefGoogle Scholar
  31. 31.
    Yano K, Hata Y, Matsuka K, Ito O, Matsuda H (1994) Time limits for intestinal ischemia and congestion: an experimental study in rats. Ann Plast Surg 32:310–314CrossRefGoogle Scholar
  32. 32.
    Kimura M, Kataoka M, Kuwabara Y, Sato A, Sugiura M, Fujii Y (2003) Real-time energy metabolism of intestine during arterial versus venous occlusion in the rat. J Gastroenterol 38:849–853CrossRefGoogle Scholar
  33. 33.
    Vincenti M, Behrends M, Dang K, Park YH, Hirose R, Blasi-Ibanez A, Liu T, Serkova NJ, Niemann CU (2010) Induction of intestinal ischemia reperfusion injury by portal vein outflow occlusion in rats. J Gastroenterol 45:1103–1110CrossRefGoogle Scholar
  34. 34.
    Nasser A, Fourman MS, Gersch RP, Phillips BT, Hsi HK, Khan SU, Gelfand MA, Dagum AB, Bui DT (2015) Utilizing indocyanine green dye angiography to detect simulated flap venous congestion in a novel experimental rat model. J Reconstr Microsurg 31:590–596CrossRefGoogle Scholar
  35. 35.
    Bodin F, Diana M, Koutsomanis A, Robert E, Marescaux J, Bruant-Rodier C (2015) Porcine model for free-flap breast reconstruction training. J Plast Reconstr Aesthet Surg 68:1402–1409CrossRefGoogle Scholar
  36. 36.
    Milstein DM, Ince C, Gisbertz SS, Boateng KB, Geerts BF, Hollmann MW, van Berge Henegouwen MI, Veelo DP (2016) Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy. Medicine (Baltimore) 95:e3875CrossRefGoogle Scholar
  37. 37.
    Diana M, Hubner M, Vuilleumier H, Bize P, Denys A, Demartines N, Schafer M (2011) Redistribution of gastric blood flow by embolization of gastric arteries before esophagectomy. Ann Thorac Surg 91:1546–1551CrossRefGoogle Scholar
  38. 38.
    Yoshimi F, Asato Y, Ikeda S, Okamoto K, Komuro Y, Imura J, Itabashi M (2006) Using the supercharge technique to additionally revascularize the gastric tube after a subtotal esophagectomy for esophageal cancer. Am J Surg 191:284–287CrossRefGoogle Scholar
  39. 39.
    Kono K, Sugai H, Omata H, Fujii H (2007) Transient bloodletting of the short gastric vein in the reconstructed gastric tube improves gastric microcirculation during esophagectomy. World J Surg 31:780–784 (discussion 785–786)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giuseppe Quero
    • 1
  • Alfonso Lapergola
    • 2
  • Manuel Barberio
    • 1
  • Barbara Seeliger
    • 1
  • Paola Saccomandi
    • 1
  • Ludovica Guerriero
    • 1
  • Didier Mutter
    • 1
    • 2
    • 3
  • Alend Saadi
    • 4
  • Marc Worreth
    • 4
  • Jacques Marescaux
    • 1
    • 2
  • Vincent Agnus
    • 2
  • Michele Diana
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.IHU-Strasbourg, Institute of Image-Guided SurgeryStrasbourgFrance
  2. 2.IRCAD, Research Institute against Cancer of the Digestive SystemStrasbourgFrance
  3. 3.Department of General, Digestive and Endocrine SurgeryUniversity Hospital of StrasbourgStrasbourgFrance
  4. 4.Department of General SurgeryHospital of PourtalèsNeuchâtelSwitzerland

Personalised recommendations