The use of 3D laparoscopic imaging systems in surgery: EAES consensus development conference 2018

  • Alberto ArezzoEmail author
  • Nereo Vettoretto
  • Nader K. Francis
  • Marco Augusto Bonino
  • Nathan J. Curtis
  • Daniele Amparore
  • Simone Arolfo
  • Manuel Barberio
  • Luigi Boni
  • Ronit Brodie
  • Nicole Bouvy
  • Elisa Cassinotti
  • Thomas Carus
  • Enrico Checcucci
  • Petra Custers
  • Michele Diana
  • Marilou Jansen
  • Joris Jaspers
  • Gadi Marom
  • Kota Momose
  • Beat P. Müller-Stich
  • Kyokazu Nakajima
  • Felix Nickel
  • Silvana Perretta
  • Francesco Porpiglia
  • Francisco Sánchez-Margallo
  • Juan A. Sánchez-Margallo
  • Marlies Schijven
  • Gianfranco Silecchia
  • Roberto Passera
  • Yoav Mintz



The use of 3D laparoscopic systems is expanding. The European Association of Endoscopic Surgery (EAES) initiated a consensus development conference with the aim of creating evidence-based statements and recommendations for the surgical community.


Systematic reviews of the PubMed and Embase libraries were performed to identify evidence on potential benefits of 3D on clinical practice and patient outcomes. Statements and recommendations were prepared and unanimously agreed by an international surgical and engineering expert panel which were presented and voted at the EAES annual congress, London, May 2018.


9967 abstracts were screened with 138 articles included. 18 statements and two recommendations were generated and approved. 3D significantly shortened operative time (mean difference 11 min (8% [95% CI 20.29–1.72], I2 96%)). A significant reduction in complications was observed when 3D systems were used (RR 0.75, [95 CI% 0.60–0.94], I2 0%) particularly for cases involving laparoscopic suturing (RR 0.57 [95% CI 0.35–0.90], I2 0%). In 69 box trainer or simulator studies, 64% concluded trainees were significant faster and 62% performed fewer errors when using 3D.


We recommend the use of 3D vision in laparoscopy to reduce the operative time (grade of recommendation: low). Future robust clinical research is required to specifically investigate the potential benefit of 3D laparoscopy system on complication rates (grade of recommendation: high).


3D laparoscopy 3D vision Three-dimensional Imaging Laparoscopic Consensus 



We would like to acknowledge Nicoletta Colombi for helping us in determining the correct syntax for the search strategy.


This project was supported and funded by the EAES.

Compliance with ethical standards


Nader Francis and Nathan J Curtis received technical support consisting of 3D stacks from Karl Storz Endoscopy UK Ltd as a free research loan for their study “The role of 3D laparoscopic rectal surgery: a randomised controlled trial” (ISRCTN59485808). Alberto Arezzo, Nereo Vettoretto, Marco Augusto Bonino, Daniele Amparore, Simone Arolfo, Manuel Barberio, Luigi Boni, Ronit Brodie, Nicole Bouvy, Elisa Cassinotti, Thomas Carus, Enrico Checcucci, Petra Custers, Michele Diana, Marilou Jansen, Joris Jaspers, Gadi Marom, Kota Momose, Beat P Müller-Stich, Kyokazu Nakajima, Felix Nickel, Silvana Perretta, Francesco Porpiglia, Francisco Sánchez-Margallo, Juan A Sánchez-Margallo, Marlies Schijven, Gianfranco Silecchia, Roberto Passera and Yoav Mintz have no conflict of interest or financial ties to disclose.

Research involving human and animal participants

This article does not contain any original study with human or animal subjects.


  1. 1.
    Sakata S, Grove PM, Hill A, Watson MO, Stevenson AR (2016) The viewpoint-specific failure of modern 3D displays in laparoscopic surgery. Langenbecks Arch Surg 401(7):1007–1018CrossRefPubMedGoogle Scholar
  2. 2.
    Schwab K, Smith R, Brown V, Whyte M, Jourdan I (2017) Evolution of stereoscopic imaging in surgery and recent advances. World J Gastrointest Endosc 9(8):368–377CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hanna GB, Shimi SM, Cuschieri A (1998) Randomised study of influence of two-dimensional versus three-dimensional imaging on performance of laparoscopic cholecystectomy. Lancet 351(9098):248–251CrossRefPubMedGoogle Scholar
  4. 4.
    Vettoretto N, Foglia E, Ferrario L, Arezzo A, Cirocchi R, Cocorullo G et al (2018) Why laparoscopists may opt for three-dimensional view: a summary of the full HTA report on 3D versus 2D laparoscopy by S.I.C.E. (Societa Italiana di Chirurgia Endoscopica e Nuove Tecnologie). Surg Endosc 32(6):2986–2993CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1–e34CrossRefGoogle Scholar
  6. 6.
    Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S et al (2004) Grading quality of evidence and strength of recommendations. BMJ 328(7454):1490CrossRefPubMedGoogle Scholar
  8. 8.
    Goldet G, Howick J (2013) Understanding GRADE: an introduction. J Evid Based Med 6(1):50–54CrossRefPubMedGoogle Scholar
  9. 9.
    Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650):924–926CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Boulkedid R, Abdoul H, Loustau M, Sibony O, Alberti C (2011) Using and reporting the Delphi method for selecting healthcare quality indicators: a systematic review. PLoS ONE 6(6):e20476CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dalkey N, Helmer O (1963) An experimental application of the DELPHI method to the use of experts. Manag Sci 9(3):458–467CrossRefGoogle Scholar
  12. 12.
    Hasson F, Keeney S, McKenna H (2000) Research guidelines for the Delphi survey technique. J Adv Nurs 32(4):1008–1015PubMedGoogle Scholar
  13. 13.
    Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  15. 15.
    Schwarzer G (2007) Meta: an R package for meta-analysis. R News 7:40–45Google Scholar
  16. 16.
    Alaraimi BS, Sarker SJ, Elbakbak WS, Makkiyah S, Al-Marzouq A, Goriparthi RG et al (2013) Laparoscopic skills performance with stereoscopic vision as compared to the standard laparoscopic vision: a randomised control study. Int J Surg 11(8):593–594CrossRefGoogle Scholar
  17. 17.
    Cicione A, Autorino R, Breda A, De Sio M, Damiano R, Fusco F et al (2013) Three-dimensional vs standard laparoscopy: comparative assessment using a validated program for laparoscopic urologic skills 82(6):1444–1450Google Scholar
  18. 18.
    Sinha R, Sundaram M, Raje S, Rao G, Sinha M, Sinha R (2013) 3D laparoscopy: technique and initial experience in 451 cases. Gynecol Surg 10:123–128CrossRefGoogle Scholar
  19. 19.
    Storz P, Buess GF, Kunert W, Kirschniak A (2012) 3D HD versus 2D HD: surgical task efficiency in standardised phantom tasks. Surg Endosc Other Interv Tech 26(5):1454–1460CrossRefGoogle Scholar
  20. 20.
    Herron DM, Lantis IJC, Maykel J, Basu C, Schwaitzberg SD (1999) The 3-D monitor and head-mounted display: a quantitative evaluation of advanced laparoscopic viewing technologies. Surg Endosc 13(8):751–755CrossRefPubMedGoogle Scholar
  21. 21.
    Ashraf A, Collins D, Whelan M, O’Sullivan R, Balfe P (2015) Three-dimensional (3D) simulation versus two-dimensional (2D) enhances surgical skills acquisition in standardised laparoscopic tasks: a before and after study. Int J Surg 14:12–16CrossRefPubMedGoogle Scholar
  22. 22.
    Leite M, Carvalho AF, Costa P, Pereira R, Moreira A, Rodrigues N et al (2016) Assessment of laparoscopic skills performance: 2D versus 3D vision and classic instrument versus new hand-held robotic device for laparoscopy. Surg Innov 23(1):52–61CrossRefPubMedGoogle Scholar
  23. 23.
    Axt S (2016) Influence of the endoscope’s stereoscopic base on performance in standardized laparoscopic tasks: a prospective randomized controlled trial. Surg Endosc Other Interv Tech 30:S74Google Scholar
  24. 24.
    Morawala A, Almeida R, Merali N, Patel B (2016) Impact of 3-D laparoscopic surgical training on performance in standard 2-D laparoscopic surgery: a randomised prospective study. Surg Endosc Other Interv Tech 30:S190Google Scholar
  25. 25.
    Uemura M, Yamashita M, Tomikawa M, Obata S, Jimbo T, Matsuoka N et al (2016) Suggestion of novel measurement methodology for performance evaluation of medical equipment. Surg Endosc Other Interv Tech 30:S362Google Scholar
  26. 26.
    Ruan Y, Wang XH, Wang K, Zhao YY, Xia SJ, Xu DL (2016) Clinical evaluation and technical features of three-dimensional laparoscopic partial nephrectomy with selective segmental artery clamping. World J Urol 34(5):679–685CrossRefPubMedGoogle Scholar
  27. 27.
    Buia A, Stockhausen F, Filmann N, Hanisch E (2017) 3D vs. 2D imaging in laparoscopic surgery—an advantage? Results of standardised black box training in laparoscopic surgery. Langenbeck’s Arch Surg 402(1):167–171CrossRefGoogle Scholar
  28. 28.
    Poudel S, Kurashima Y, Watanabe Y, Ebihara Y, Tamoto E, Murakami S et al (2017) Impact of 3D in the training of basic laparoscopic skills and its transferability to 2D environment: a prospective randomized controlled trial. Surg Endosc Other Interv Tech 31(3):1111–1118CrossRefGoogle Scholar
  29. 29.
    Sakata S, Grove PM, Hill A, Watson MO, Stevenson ARL (2017) Impact of simulated three-dimensional perception on precision of depth judgements, technical performance and perceived workload in laparoscopy. Br J Surg 104(8):1097–1106CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Honeck P, Wendt-Nordahl G, Rassweiler J, Knoll T (2012) Three-dimensional laparoscopic imaging improves surgical performance on standardized ex-vivo laparoscopic tasks. J Endourol 26(8):1085–1088CrossRefPubMedGoogle Scholar
  31. 31.
    Yalcin S, Kibar Y, Ozgok IY (2014) Which system is better for beginners’ laparoscopy training? glasses based full-hd 3D monitor systems or standard (full-hd 2D) monitor systems. J Endourol 28:A271Google Scholar
  32. 32.
    Ajao MO, Fuchs Weizman N, Goggins ER, Manoucheri E, Hur HC, Wang K et al (2015) Three-dimensional vision: does it improve acquisition of laparoscopic skills? J Minim Invasive Gynecol 22(6):S36CrossRefPubMedGoogle Scholar
  33. 33.
    Alaraimi B, El Bakbak W, Sarker S, Makkiyah S, Al-Marzouq A, Goriparthi R et al (2014) A randomized prospective study comparing acquisition of laparoscopic skills in three-dimensional (3D) vs. two-dimensional (2D) laparoscopy. World J Surg 38(11):2746–2752CrossRefGoogle Scholar
  34. 34.
    Autorino R, Cicione A, Breda A, De Sio M, Damiano R, Greco F et al (2013) Three-dimensional versus standard laparoscopy: comparative assessment using a validated program for laparoscopic urologic skills. J Endourol 27:A161–A162Google Scholar
  35. 35.
    Aykan S, Akin Y, Pelit ES, Gulmez H, Tuken M, Colakerol A et al (2017) Impact of motorized articulating laparoscopic devices with three-dimension visualizing system: a pilot study. J Endourol 31(2):174–179CrossRefPubMedGoogle Scholar
  36. 36.
    Bucur P, Lusch A, Menhadji A, Liss MA, Okhunov Z, Landman J (2013) Evaluation of the impact of threedimensional vision on laparoscopic performance. J Endourol 27:A32Google Scholar
  37. 37.
    Chiu CJ, Lobo Prabhu K, Tan-Tam CCH, Panton ONM, Meneghetti A (2015) Using three-dimensional laparoscopy as a novel training tool for novice trainees compared with two-dimensional laparoscopy. Am J Surg 209(5):824–827CrossRefPubMedGoogle Scholar
  38. 38.
    Cologne KG, Zehetner J, Liwanag L, Cash C, Senagore AJ, Lipham JC (2015) Three-dimensional laparoscopy: does improved visualization decrease the learning curve among trainees in advanced procedures? Surg Laparosc Endosc Percutan Tech 25(4):321–323CrossRefPubMedGoogle Scholar
  39. 39.
    Davenport K, Burns A, Helo S, Bailey G, Peters C, Schenkman N (2012) Comparison of 3D stereoscope vs. standard 2D laparoscope for performance of two standard laparoscopic tasks by urology residents. J Urol 187(4):e611CrossRefGoogle Scholar
  40. 40.
    Drosdeck JM, Renton DB (2014) The effect of three-dimensional versus two-dimensional imaging displays on task performance by laparoscopy-naïve subjects. Surg Endosc Other Interv Tech 28:324Google Scholar
  41. 41.
    Feng C, Rozenblit JW, Hamilton AJ (2010) A computerized assessment to compare the impact of standard, stereoscopic, and high-definition laparoscopic monitor displays on surgical technique. Surg Endosc Other Interv Tech 24(11):2743–2748CrossRefGoogle Scholar
  42. 42.
    Feng X, Morandi A, Imvised T, Ure B, Kuebler JF, Lacher M (2015) Three-dimensional versus two-dimensional imaging in adult versus pediatric laparoscopy: a simulator box study. J Adv Surg Tech 25(12):1051–1056Google Scholar
  43. 43.
    Ghedi A, Donarini E, Lamera R, Sgroi G, Turati L, Ercole C (2015) 3D vs 2D laparoscopic systems: development of a performance quantitative validation model. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference, pp 6884-6887Google Scholar
  44. 44.
    Guanà R, Ferrero L, Garofalo S, Cerrina A, Cussa D, Arezzo A et al (2017) Skills comparison in pediatric residents using a 2-dimensional versus a 3-dimensional high-definition camera in a pediatric laparoscopic simulator. J Surg Educ 74(4):644–649CrossRefPubMedGoogle Scholar
  45. 45.
    Han KN, Kim HK, Lee HJ, Choi YH (2015) Simulation of single port endoscopic surgery: comparative study of two-with three-dimensional video system. Surg Endosc Other Interv Tech 29:S434Google Scholar
  46. 46.
    Elbakbak W, Alaramim B, Bouhelal A, Sarker SJ, Patel B (2013) Does 3D imaging improve laparoscopic intracorporeal suturing skill acquisition in novices and trainee surgeons? Int J Surg 11(8):706CrossRefGoogle Scholar
  47. 47.
    Harada H, Kanaji S, Nishi M, Otake Y, Hasegawa H, Yamamoto M et al (2018) The learning effect of using stereoscopic vision in the early phase of laparoscopic surgical training for novices. Surg Endosc 32(2):582–588CrossRefPubMedGoogle Scholar
  48. 48.
    Jones DB, Brewer JD, Soper NJ (1996) The influence of three-dimensional video systems on laparoscopic task performance. Surg Laparosc Endosc 6(3):191–197CrossRefPubMedGoogle Scholar
  49. 49.
    Kan YM, Lee CL, Cheah WK, Seow CS, Tan DE, Foo JS (2013) 3D imaging in laparoscopy: improving training & skill aquistition for junior trainees. Surg Endosc Other Interv Tech 27:S418Google Scholar
  50. 50.
    Kommu S, Finnigan T, Cartlidge D, Golash A, Luscombe C, Sarg S (2009) Tandem two dimensional versus three dimensional viewing in learning curve for ex vivo skill acquision for laparoendoscopic single site surgery (LESS). J Endourol 23:A1Google Scholar
  51. 51.
    Lagrange CA, Clark CJ, Gerber EW, Strup SE (2008) Evaluation of three laparoscopic modalities robotics versus three-dimensional vision laparoscopy versus standard laparoscopy. J Endourol 22(3):511–516CrossRefPubMedGoogle Scholar
  52. 52.
    Lin CJ, Cheng CF, Chen HJ, Wu KY (2017) Training performance of laparoscopic surgery in two- and three-dimensional displays. Surg Innov 24(2):162–170CrossRefPubMedGoogle Scholar
  53. 53.
    Lu J, Hu J, Tan WB, Lomanto D (2015) Does 3D vision make a difference in laparoscopic skills acquisition? A randomized controlled trial. Surg Endosc Other Interv Tech 29:S437Google Scholar
  54. 54.
    Lusch A, Bucur PL, Menhadji AD, Okhunov Z, Liss MA, Perez-Lanzac A et al (2014) Evaluation of the impact of three-dimensional vision on laparoscopic performance. J Endourol 28(2):261–266CrossRefPubMedGoogle Scholar
  55. 55.
    Kong SH, Oh BM, Yoon H, Ahn HS, Lee HJ, Chung SG et al (2010) Comparison of two- and three-dimensional camera systems in laparoscopic performance: a novel 3D system with one camera. Surg Endosc Other Interv Tech 24(5):1131–1143Google Scholar
  56. 56.
    Mashiach R, Mezhybovsky V, Ziv A, Gutman M, Goldenberg M (2013) Three-dimensional imaging improves surgical performance for both experienced and novice laparoscopic surgeons. J Minim Invasive 20(6):S17–S18CrossRefGoogle Scholar
  57. 57.
    Matsunaga R, Nishizawa Y, Saito N, Kobayashi A, Ohdaira T, Ito M (2017) Quantitative evaluation of 3D imaging in laparoscopic surgery. Surg Today 47(4):440–444CrossRefPubMedGoogle Scholar
  58. 58.
    Mistry M, Roach VA, Wilson TD (2013) Application of stereoscopic visualization on surgical skill acquisition in novices. J Surg 70(5):563–570Google Scholar
  59. 59.
    Morawala A, Alaraimi B, Patel B (2015) Validation of 3D (dimensional) models for training in laparoscopic surgery based on mistels for training and evaluation of laparoscopic skills. Surg Endosc Other Interv Tech 29:S300–S301Google Scholar
  60. 60.
    Nagao Y, Uemura M, Ishii H, Ohuchida K, Ieiri S, Morimasa T et al (2012) The effect of 3D monitoring system on single incision laparoscopic surgery. Surg Endosc Other Interv Tech 26:S403Google Scholar
  61. 61.
    Ng EK, Yip HC, Teoh AY (2016) A randomized study comparing the performance and learning curve of laparoscopic suturing by the novice using either 3D versus 2D laparoscopy systems. J Gastroenterol Hepatol 31:435Google Scholar
  62. 62.
    Nolan GJ, Howell S, Hewett P (2015) Impact of three-dimensional imaging in acquisition of laparoscopic skills in novice operators. J Adv Surg Tech 25(4):301–304Google Scholar
  63. 63.
    Noureldin YA, Stoica A, Kaneva P, Andonian S (2016) Impact of training on three-dimensional versus two-dimensional laparoscopic systems on acquisition of laparoscopic skills in novices: a prospective comparative pilot study. Biomed Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ozsoy M, Kallidonis P, Kyriazis I, Panagopoulos V, Vasilas M, Sakellaropoulos GC et al (2015) Novice surgeons: do they benefit from 3D laparoscopy? Lasers Med Sci 30(4):1325–1333CrossRefPubMedGoogle Scholar
  65. 65.
    Patel HR, Ribal MJ, Arya M, Nauth-Misir R, Joseph JV (2007) Is it worth revisiting laparoscopic three-dimensional visualization? A validated assessment. Urology 70(1):47–49CrossRefPubMedGoogle Scholar
  66. 66.
    Peitgen K, Walz MV, Walz MV, Holtmann G, Eigler FW (1996) A prospective randomized experimental evaluation of three-dimensional imaging in laparoscopy. Gastrointest Endosc 44(3):262–267CrossRefPubMedGoogle Scholar
  67. 67.
    Rabischong B, Compan C, Botchorishvili R, Bourdel N, Canis M (2014) Interest of a three-dimensional vision system in laparoscopic suturing on pelvi-trainer: a prospective comparative study among naïve medical students. J Minim Invasive 21(6):S90CrossRefGoogle Scholar
  68. 68.
    Sakata S, Grove PM, Watson MO, Stevenson AR (2017) The impact of crosstalk on three-dimensional laparoscopic performance and workload. Surg Endosc 31:4044–4050CrossRefPubMedGoogle Scholar
  69. 69.
    Schoenthaler M, Schnell D, Wilhelm K, Schlager D, Adams F, Hein S et al (2016) Stereoscopic (3D) versus monoscopic (2D) laparoscopy: comparative study of performance using advanced HD optical systems in a surgical simulator model. W J Urol 34(4):471–477CrossRefGoogle Scholar
  70. 70.
    Shetty S, Wilk S, Bhamidipati V, Shaikh I, Palesty AJ (2013) The role of 3d visualization in laparoscopic simulation training. Surg Endosc Other Interv Tech 27:S341Google Scholar
  71. 71.
    Silvestri M, Simi M, Cavallotti C, Vatteroni M, Ferrari V, Freschi C et al (2011) Autostereoscopic three-dimensional viewer evaluation through comparison with conventional interfaces in laparoscopic surgery. Surg Innov 18(3):223–230CrossRefPubMedGoogle Scholar
  72. 72.
    Smith R, Day A, Rockall T, Ballard K, Bailey M, Jourdan I (2012) Advanced stereoscopic projection technology significantly improves novice performance of minimally invasive surgical skills. Surg Endosc Other Interv Tech 26(6):1522–1527CrossRefGoogle Scholar
  73. 73.
    Smith R, Schwab K, Day A, Rockall T, Ballard K, Bailey M et al (2014) Effect of passive polarizing three-dimensional displays on surgical performance for experienced laparoscopic surgeons. Br J Surg 101(11):1453–1459CrossRefPubMedGoogle Scholar
  74. 74.
    Sorensen SMD, Konge L, Bjerrum F (2017) 3D vision accelerates laparoscopic proficiency and skills are transferable to 2D conditions: a randomized trial. Am J Surg 214(1):63–68CrossRefPubMedGoogle Scholar
  75. 75.
    Sorensen SM, Savran MM, Konge L, Bjerrum F (2016) Three-dimensional versus two-dimensional vision in laparoscopy: a systematic review. Surg Endosc 30(1):11–23CrossRefPubMedGoogle Scholar
  76. 76.
    Spille J, Wenners A, von Hehn U, Maass N, Pecks U, Mettler L et al (2017) 2D versus 3D in laparoscopic surgery by beginners and experts: a randomized controlled trial on a pelvitrainer in objectively graded surgical steps. J Surg Educ 74(5):867–877CrossRefPubMedGoogle Scholar
  77. 77.
    Sun CC, Chiu AW, Chen KK, Chang LS (2000) Assessment of a three-dimensional operating system with shill tests in a pelvic trainer. Urol Int 64(3):154–158CrossRefPubMedGoogle Scholar
  78. 78.
    Tanagho YS, Andriole GL, Paradis AG, Madison KM, Sandhu GS, Varela JE et al (2012) 2D versus 3D visualization: impact on laparoscopic proficiency using the fundamentals of laparoscopic surgery skill set. J Adv Surg Tech 22(9):865–870Google Scholar
  79. 79.
    Thomsen MN, Lang RD (2004) An experimental comparison of 3-dimensional and 2-dimensional endoscopic systems in a model. Arthroscopy 20(4):419–423CrossRefPubMedGoogle Scholar
  80. 80.
    Tung KL, Yang GP, Li MK (2015) Comparative study of 2-D and bichanneled 3-D laparoscopic images: is there a difference? Asian J Endosc Surg 8(3):275–280CrossRefPubMedGoogle Scholar
  81. 81.
    Usta TA, Ozkaynak A, Kovalak E, Ergul E, Naki MM, Kaya E (2015) An assessment of the new generation three-dimensional high definition laparoscopic vision system on surgical skills: a randomized prospective study. Surg Endosc Other Interv Tech 29(8):2305–2313CrossRefGoogle Scholar
  82. 82.
    van Bergen P, Kunert W, Bessell J, Buess GF (1998) Comparative study of two-dimensional and three-dimensional vision systems for minimally invasive surgery. Surg Endosc 12(7):948–954CrossRefPubMedGoogle Scholar
  83. 83.
    Vilaca JM, Ferreira-Fernandes S, Leite M, Correia-Pinto J, Leão P (2016) Less surgery in a porcine model: comparative study of 3D vs 2D. Surg Endosc Other Interv Tech 30:S54Google Scholar
  84. 84.
    Votanopoulos K, Brunicardi FC, Thornby J, Bellows CF (2008) Impact of three-dimensional vision in laparoscopic training. World J Surg 32(1):110–118CrossRefPubMedGoogle Scholar
  85. 85.
    Wagner OJ, Hagen M, Kurmann A, Horgan S, Candinas D, Vorburger SA (2012) Three-dimensional vision enhances task performance independently of the surgical method. Surg Endosc Other Interv Tech 26(10):2961–2968CrossRefGoogle Scholar
  86. 86.
    Wilhelm D, Reiser S, Kohn N, Witte M, Leiner U, Muhlbach L et al (2014) Comparative evaluation of HD 2D/3D laparoscopic monitors and benchmarking to a theoretically ideal 3D pseudodisplay: even well-experienced laparoscopists perform better with 3D. Surg Endosc 28(8):2387–2397CrossRefPubMedGoogle Scholar
  87. 87.
    Wilhelm P, Dietz N, Axt S, Storz P, Kunert W, Falch C et al (2016) Effect of stereoscopic vision on the learning curve of laparoscopic training: a prospective randomized controlled trial. Surg Endosc Other Interv Tech 30:S4Google Scholar
  88. 88.
    Bhayani SB, Andriole GL (2005) Three-dimensional (3D) vision: does it improve laparoscopic skills? An assessment of a 3D head-mounted visualization system. Rev Urol 7(4):211–214PubMedPubMedCentralGoogle Scholar
  89. 89.
    Bittner JG, Hathaway CA, Brown JA (2008) Three-dimensional visualisation and articulating instrumentation: impact on simulated laparoscopic tasks. J Minim Access Surg 4(2):31–38CrossRefPubMedGoogle Scholar
  90. 90.
    Cicione A, Autorino R, Laguna MP, De Sio M, Micali S, Turna B et al (2015) Three-dimensional technology facilitates surgical performance of novice laparoscopy surgeons: a quantitative assessment on a porcine kidney model. Urology 85(6):1252–1256CrossRefPubMedGoogle Scholar
  91. 91.
    Feng X, Morandi A, Boehne M, Imvised T, Ure BM, Kuebler JF et al (2015) 3-Dimensional (3D) laparoscopy improves operating time in small spaces without impact on hemodynamics and psychomental stress parameters of the surgeon. Surg Endosc Other Interv Tech 29(5):1231–1239CrossRefGoogle Scholar
  92. 92.
    Folaranmi SE, Partridge RW, Brennan PM, Hennessey IA (2016) Does a 3D image improve laparoscopic motor skills? J Laparoendosc Adv Surg Tech A 26(8):671–673CrossRefPubMedGoogle Scholar
  93. 93.
    Hanna GB, Cuschieri A (2000) Influence of two-dimensional and three-dimensional imaging on endoscopic bowel suturing. World J Surg 24(4):444–448 (discussion 8–9)CrossRefPubMedGoogle Scholar
  94. 94.
    Kawanishi Y, Fujimoto Y, Kumagai N, Takemura M, Nonaka M, Nakai E et al (2013) Evaluation of two- and three-dimensional visualization for endoscopic endonasal surgery using a novel stereoendoscopic system in a novice: a comparison on a dry laboratory model. Acta Neurochir 155(9):1621–1627CrossRefPubMedGoogle Scholar
  95. 95.
    Nishi M, Kanaji S, Otake Y, Harada H, Yamamoto M, Oshikiri T et al (2017) Quantitative comparison of operative skill using 2- and 3-dimensional monitors during laparoscopic phantom tasks. Surgery 161(5):1334–1340CrossRefPubMedGoogle Scholar
  96. 96.
    Taffinder N, Smith SG, Huber J, Russell RC, Darzi A (1999) The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons. Surg Endosc 13(11):1087–1092CrossRefPubMedGoogle Scholar
  97. 97.
    Foo JL, Martinez-Escobar M, Juhnke B, Cassidy K, Hisley K, Lobe T et al (2013) Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization. J Adv Surg Tech 23(1):65–70Google Scholar
  98. 98.
    Sakata S, Grove PM, Watson MO, Stevenson ARL (2017) The impact of crosstalk on three-dimensional laparoscopic performance and workload. Surg Endosc Other Interv Tech 31:4044–4050CrossRefGoogle Scholar
  99. 99.
    Gomez-Gomez E, Carrasco-Valiente J, Valero-Rosa J, Campos-Hernandez JP, Anglada-Curado FJ, Carazo-Carazo JL et al (2015) Impact of 3D vision on mental workload and laparoscopic performance in inexperienced subjects. Actas Urol Esp 39(4):229–235CrossRefPubMedGoogle Scholar
  100. 100.
    Zhou J, Xu HJ, Liang CZ, Zhang L, Hao ZY, Feng LX (2015) A comparative study of distinct ocular symptoms after performing laparoscopic surgical tasks using a three-dimensional surgical imaging system and a conventional two-dimensional surgical imaging system. J Endourol 29(7):816–820CrossRefPubMedGoogle Scholar
  101. 101.
    Velayutham V, Fuks D, Nomi T, Kawaguchi Y, Gayet B (2016) 3D visualization reduces operating time when compared to high-definition 2D in laparoscopic liver resection: a case-matched study. Surg Endosc Other Interv Tech 30(1):147–153CrossRefGoogle Scholar
  102. 102.
    Agrusa A, di Buono G, Chianetta D, Sorce V, Citarrella R, Galia M et al (2016) Three-dimensional (3D) versus two-dimensional (2D) laparoscopic adrenalectomy: a case-control study. Int J Surg 28:S114–S117CrossRefPubMedGoogle Scholar
  103. 103.
    Kyriazis I, Ozsoy M, Kallidonis P, Vasilas M, Panagopoulos V, Liatsikos E (2015) Integrating three-dimensional vision in laparoscopy: the learning curve of an expert. J Endourol 29(6):657–660CrossRefPubMedGoogle Scholar
  104. 104.
    Patankar SB, Padasalagi GR (2017) Three-dimensional versus two-dimensional laparoscopy in urology: a randomized study. Indian J Urol 33(3):226–229CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wahba R, Kleinert R, Hellmich M, Heiermann N, Dieplinger G, Schlosser HA et al (2017) Optimizing a living kidney donation program: transition to hand-assisted retroperitoneoscopic living donor nephrectomy and introduction of a passive polarizing three-dimensional display system. Surg Endosc 31(6):2577–2585CrossRefPubMedGoogle Scholar
  106. 106.
    Kinoshita H, Nakagawa K, Usui Y, Iwamura M, Ito A, Miyajima A et al (2015) High-definition resolution three-dimensional imaging systems in laparoscopic radical prostatectomy: randomized comparative study with high-definition resolution two-dimensional systems. Surg Endosc Other Interv Tech 29(8):2203–2209CrossRefGoogle Scholar
  107. 107.
    Hoffmann E, Bennich G, Larsen CR, Lindschou J, Jakobsen JC, Lassen PD (2017) 3-dimensional versus conventional laparoscopy for benign hysterectomy: protocol for a randomized clinical trial. BMC Women’s Health 17(1):76CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Raspagliesi F, Bogani G, Martinelli F, Signorelli M, Scaffa C, Sabatucci I et al (2017) 3D vision improves outcomes in early cervical cancer treated with laparoscopic type B radical hysterectomy and pelvic lymphadenectomy. Tumori J 103(1):76–80CrossRefGoogle Scholar
  109. 109.
    Fanfani F, Rossitto C, Restaino S, Ercoli A, Chiantera V, Monterossi G et al (2016) How technology can impact surgeon performance: a randomized trial comparing 3-dimensional versus 2-dimensional laparoscopy in gynecology oncology. J Minim Invasive 23(5):810–817CrossRefGoogle Scholar
  110. 110.
    Lara-Dominguez MD, Lopez-Jimenez A, Grabowski JP, Arjona-Berral JE, Zapardiel I (2017) Prospective observational study comparing traditional laparoscopy and three-dimensional laparoscopy in gynecologic surgery. Int J Gynaecol Obstet 136(3):320–324CrossRefPubMedGoogle Scholar
  111. 111.
    Qiu D, Zhuang H, Han F (2017) Effect and influence factor analysis of intrahepatic Glisson’s sheath vascular disconnection approach for anatomical hepatectomy by three-dimensional laparoscope. J BUON 22(1):157–161PubMedGoogle Scholar
  112. 112.
    Lu J, Zheng CH, Zheng HL, Li P, Xie JW, Wang JB et al (2017) Randomized, controlled trial comparing clinical outcomes of 3D and 2D laparoscopic surgery for gastric cancer: an interim report. Surg Endosc Other Interv Tech 31(7):2939–2945CrossRefGoogle Scholar
  113. 113.
    Curro G, La Malfa G, Caizzone A, Rampulla V, Navarra G (2015) Three-dimensional (3D) versus two-dimensional (2D) laparoscopic bariatric surgery: a single-surgeon prospective randomized comparative study. Obes Surg 25(11):2120–2124CrossRefPubMedGoogle Scholar
  114. 114.
    Leon P, Rivellini R, Giudici F, Sciuto A, Pirozzi F, Corcione F (2017) 3D vision provides shorter operative time and more accurate intraoperative surgical performance in laparoscopic hiatal hernia repair compared with 2D vision. Surg Innov 24(2):155–161CrossRefPubMedGoogle Scholar
  115. 115.
    Curro G, La Malfa G, Lazzara S, Caizzone A, Fortugno A, Navarra G (2015) Three-dimensional versus two-dimensional laparoscopic cholecystectomy: is surgeon experience relevant? J Laparoendosc Adv Surg Tech A 25(7):566–570CrossRefPubMedGoogle Scholar
  116. 116.
    Bilgen K, Ustun M, Karakahya M, Isik S, Sengul S, Cetinkunar S et al (2013) Comparison of 3D imaging and 2D imaging for performance time of laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech 23(2):180–183CrossRefPubMedGoogle Scholar
  117. 117.
    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bove P, Iacovelli V, Celestino F, De Carlo F, Vespasiani G, Finazzi Agro E (2015) 3D vs 2D laparoscopic radical prostatectomy in organ-confined prostate cancer: comparison of operative data and pentafecta rates: a single cohort study. BMC Urol 15:12CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Aykan S, Singhal P, Nguyen DP, Yigit A, Tuken M, Yakut E et al (2014) Perioperative, pathologic, and early continence outcomes comparing three-dimensional and two-dimensional display systems for laparoscopic radical prostatectomy-a retrospective, single-surgeon study. J Endourol 28(5):539–543CrossRefPubMedGoogle Scholar
  120. 120.
    Li Z, Li JP, Qin X, Xu BB, Han YD, Liu SD et al (2015) Three-dimensional vs two-dimensional video assisted thoracoscopic esophagectomy for patients with esophageal cancer. World J Gastroenterol 21(37):10675–10682CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Padin EM, Santos RS, Fernandez SG, Jimenez AB, Fernandez SE, Dacosta EC et al (2017) Impact of three-dimensional laparoscopy in a bariatric surgery program: influence in the learning curve. Obes Surg 27:2552–2556CrossRefPubMedGoogle Scholar
  122. 122.
    Curro G, Cogliandolo A, Bartolotta M, Navarra G (2016) Three-dimensional versus two-dimensional laparoscopic right hemicolectomy. J Laparoendosc Adv Surg Tech A 26(3):213–217CrossRefPubMedGoogle Scholar
  123. 123.
    Tao K, Liu X, Deng M, Shi W, Gao J (2016) Three-dimensional against 2-dimensional laparoscopic colectomy for right-sided colon cancer. Surg Laparosc Endosc Percutan Tech 26(4):324–327CrossRefPubMedGoogle Scholar
  124. 124.
    Currò G, Lazzara S, La Malfa G, Giovanni P, De Leo E, Fortugno A et al (2016) Three-dimensional (3D) versus two-dimensional (2D) laparoscopic oncological colorectal surgery: a single-surgeon prospective randomized comparative study. Eur J Surg Oncol 42(10):S206CrossRefGoogle Scholar
  125. 125.
    Avram IO, Koukoulas D, Olariu S, Avram MF (2017) Laparoscopic cholecystectomy using 3D-vision: are there any benefits? Surg Endosc Other Interv Tech 31(2):S72Google Scholar
  126. 126.
    Sahu D, Mathew MJ, Reddy PK (2014) 3D laparoscopy—help or hype; initial experience of a tertiary health centre. J Clin Diagn Res 8(7):NC01–NC0C3PubMedPubMedCentralGoogle Scholar
  127. 127.
    Ji F, Liu X, Liu Z, Fang X (2014) Application of three-dimensional laparoscopic system in obturator lymph node dissection of progressive rectal cancer. Zhonghua wei chang wai ke za zhi = Chinese. J Gastrointest Surg 17(11):1121–1124Google Scholar
  128. 128.
    Ji F, Fang X, Fei B (2017) Comparative study of 3D and 2D laparoscopic surgery for gastrointestinal tumors. Zhonghua wei chang wai ke za zhi 20(5):509–513PubMedGoogle Scholar
  129. 129.
    Avram IO, Olariu S, Koukoulas D, Avram MF (2017) Colorectal surgery using 3D-vision: benefits and setbacks. Surg Endosc Other Interv Tech 31(2):S81Google Scholar
  130. 130.
    Kanaji S, Suzuki S, Harada H, Nishi M, Yamamoto M, Matsuda T et al (2017) Comparison of two- and three-dimensional display for performance of laparoscopic total gastrectomy for gastric cancer. Langenbeck’s Arch Surg 402(3):493–500CrossRefGoogle Scholar
  131. 131.
    Kaufman Y, Sharon A, Klein O, Spiegel D, Auslander R, Lissak A (2007) The three-dimensional “insect eye” laparoscopic imaging system—A prospective randomized study. Surgery 4(1):31–34Google Scholar
  132. 132.
    Fujii Y, Kihara K, Yoshida S, Ishioka J, Matsuoka Y, Numao N et al (2014) A three-dimensional head-mounted display system (RoboSurgeon system) for gasless laparoendoscopic single-port partial cystectomy. Wideochirurgia I Inne Techniki Maloinwazyjne 9(4):1–6Google Scholar
  133. 133.
    Kihara K, Fujii Y, Masuda H, Saito K, Koga F, Matsuoka Y et al (2012) New three-dimensional head-mounted display system, TMDU-S-3D system, for minimally invasive surgery application: procedures for gasless single-port radical nephrectomy. Int J Urol 19(9):886–889CrossRefPubMedGoogle Scholar
  134. 134.
    Aesculap AG (2019) Prostatectomies using Einstein Vision® 3D [updated May]. Accessed 22 Sept 2017
  135. 135.
    Brigham WH (2016) Does 3D laparoscopy improve vaginal cuff suture time? [updated August]. Accessed 22 Sept 2017
  136. 136.
    Casa di Cura Dott P (2017) 3D laparoscopy versus 2D laparoscopy [updated October]. Accessed 22 Sept 2017
  137. 137.
    Catholic University of the Sacred Heart, Fagotti AMD, Fanfani FMD (2015) 2D versus 3D radical laparoscopic hysterectomy for endometrial cancer: a prospective randomized trial [updated March]. Accessed 22 Sept 2017
  138. 138.
    Catholic University of the Sacred Heart, Fanfani FMD, Fagotti AMD (2015) 2D versus 3D radical laparoscopic hysterectomy for cervical cancer: a prospective randomized trial [updated March]. Accessed 22 Sept 2017
  139. 139.
    Chinese PLAGH (2019) 3D versus 2D laparoscopic total gastrectomy with splenic hilum lymph nodes dissection [updated December. Accessed 22 Sept 2017
  140. 140.
    Clinical Research Management Centre (2017) Does 3D visualisation improve performance of laparoscopic cholecystectomy by junior surgeons? [updated September 30]. Accessed 22 Sept 2017
  141. 141.
    Fujian Medical University (2016) Randomized controlled trials comparing clinical outcomes of 3D versus 2D laparoscopic surgery for gastric cancer [updated June]. Accessed 22 Sept 2017
  142. 142.
    Helsinki University Central Hospital (2017) 3D vs 2D HD laparoscopy in cholecystectomy [updated May 10]. Accessed 22 Sept 2017
  143. 143.
    Helsinki University Central Hospital (2020) 3D vs 2D HD laparoscopy in inguinal hernia repair [updated January]. Accessed 22 Sept 2017
  144. 144.
    Herlev Hospital (2017) 3D HD versus 2D HD in cholecystectomy [updated September]. Accessed 22 Sept 2017
  145. 145.
    Herlev Hospital (2018) 3D HD versus 2D HD in laparoscopic inguinal hernia repair: a randomized controlled trial [updated December]. Accessed 22 Sept 2017
  146. 146.
    Olympus Corporation of the Americas, International Urogynecology Associates (2018) Laparoscopic three-dimensional versus two-dimensional sacral colpopexy and paravaginal repair [updated March]. Accessed 22 Sept 2017
  147. 147.
    Royal Surrey County Hospital (2014) Investigating three-dimensional versus two-dimensional imaging in laparoscopic cholecystectomies [updated October]. Accessed 22 Sept 2017
  148. 148.
    Royal Surrey County Hospital (2017) 3D versus 4K laparoscopic cholecystectomy [updated August 29]. Accessed 22 Sept 2017
  149. 149.
    Shanghai First Maternity, Infant Hospital (2018) Analysis of TU-LESS by 3D laparoscopy in the treatment of infertility [updated December]. Accessed 22 Sept 2017
  150. 150.
    The Cleveland C (2018) Evaluation of 3D visualization for total colectomy [updated December]. Accessed 22 Sept 2017
  151. 151.
    Zealand University Hospital (2018) 2-D and 3-D laparoscopic hysterectomy [updated December]. Accessed 22 Sept 2017
  152. 152.
    Gurusamy KS, Nagendran M, Toon CD, Davidson BR (2014) Laparoscopic surgical box model training for surgical trainees with limited prior laparoscopic experience. Cochrane Database Syst Rev 3:Cd010478Google Scholar
  153. 153.
    Lim S, Ghosh S, Niklewski P, Roy S (2017) Laparoscopic suturing as a barrier to broader adoption of laparoscopic surgery. Jsls. CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Sakata S, Watson MO, Grove PM, Stevenson AR (2016) The conflicting evidence of three-dimensional displays in laparoscopy: a review of systems old and new. Ann Surg 263(2):234–239CrossRefPubMedGoogle Scholar
  155. 155.
    Cheng J, Gao J, Shuai X, Wang G, Tao K (2016) Two-dimensional versus three-dimensional laparoscopy in surgical efficacy: a systematic review and meta-analysis. Oncotarget 7(43):70979–70990PubMedPubMedCentralGoogle Scholar
  156. 156.
    Bohr I, Read JC (2013) Stereoacuity with Frisby and revised FD2 stereo tests. PLoS ONE 8(12):e82999CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Bargary G, Hogg RE, Mollon JD (2015) A population study of binocular function. Vision Res 110(Pt A):34–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Arezzo
    • 1
    Email author
  • Nereo Vettoretto
    • 2
  • Nader K. Francis
    • 3
  • Marco Augusto Bonino
    • 1
  • Nathan J. Curtis
    • 3
    • 4
  • Daniele Amparore
    • 5
  • Simone Arolfo
    • 1
  • Manuel Barberio
    • 6
  • Luigi Boni
    • 7
  • Ronit Brodie
    • 8
  • Nicole Bouvy
    • 9
  • Elisa Cassinotti
    • 7
  • Thomas Carus
    • 10
  • Enrico Checcucci
    • 5
  • Petra Custers
    • 9
  • Michele Diana
    • 6
  • Marilou Jansen
    • 11
  • Joris Jaspers
    • 12
  • Gadi Marom
    • 8
  • Kota Momose
    • 13
  • Beat P. Müller-Stich
    • 14
  • Kyokazu Nakajima
    • 13
  • Felix Nickel
    • 14
  • Silvana Perretta
    • 6
  • Francesco Porpiglia
    • 5
  • Francisco Sánchez-Margallo
    • 15
  • Juan A. Sánchez-Margallo
    • 15
  • Marlies Schijven
    • 11
  • Gianfranco Silecchia
    • 16
  • Roberto Passera
    • 1
  • Yoav Mintz
    • 8
  1. 1.Department of Surgical SciencesUniversity of TorinoTorinoItaly
  2. 2.Montichiari SurgeryASST Spedali Civili BresciaMontichiariItaly
  3. 3.Department of General SurgeryYeovil District Hospital NHS Foundation TrustYeovilUK
  4. 4.Department of Surgery and Cancer, St Mary’s HospitalImperial College LondonLondonUK
  5. 5.Division of Urology, ESUT Research GroupSan Luigi Gonzaga HospitalTorinoItaly
  6. 6.IRCAD, Research Institute Against Digestive CancerStrasbourgFrance
  7. 7.Department of Surgery, Fondazione IRCCS Cà Granda, Policlinico HospitalUniversity of MilanMilanItaly
  8. 8.Department of SurgeryHadassah-Hebrew University Medical CenterJerusalemIsrael
  9. 9.Department of SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
  10. 10.Department of Surgery, Center for Minimally Invasive SurgeryAsklepios Westklinikum HamburgHamburgGermany
  11. 11.Department of SurgeryAcademic Medical Centre AmsterdamAmsterdamThe Netherlands
  12. 12.Department of Medical Technology and Clinical PhysicsUniversity Medical Centre UtrechtUtrechtThe Netherlands
  13. 13.Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
  14. 14.General-, Visceral-and Transplant SurgeryUniversity of Heidelberg HospitalHeidelbergGermany
  15. 15.Jesús Usón Minimally Invasive Surgery CentreCáceresSpain
  16. 16.Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and MedicineSapienza University of RomeRomeItaly

Personalised recommendations