Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surgery in space: the future of robotic telesurgery



The origins of telemedicine date back to the early 1970s, and combined with the concept of minimally invasive surgery, the idea of surgical robotics was born in the late 1980s based on the principle of providing active telepresence to surgeons. Many research projects were initiated, creating a set of instruments for endoscopic telesurgery, while visionary surgeons built networks for telesurgical patient care, demonstrated transcontinental surgery, and performed procedures in weightlessness. Long-distance telesurgery became the testbed for new medical support concepts of space missions.


This article provides a complete review of the milestone experiments in the field, and describes a feasible concept to extend telemedicine beyond Earth orbit. With a possible foundation of an extraplanetary human outpost either on the Moon or on Mars, space agencies are carefully looking for effective and affordable solutions for life-support and medical care. The major challenges of surgery in weightlessness are also discussed.


Teleoperated surgical robots have the potential to shape the future of extreme health care both in space and on Earth. Besides the apparent advantages, there are some serious challenges, primarily the difficulty of latency with teleoperation over long distances. Advanced virtualization and augmented-reality techniques should help human operators to adapt better to the special conditions. To meet safety standards and requirements in space, a three-layered architecture is recommended to provide the highest quality of telepresence technically achievable for provisional exploration missions.


Surgical robotic technology is an emerging interdisciplinary field, with a great potential impact on many areas of health care, including telemedicine. With the proposed three-layered concept—relying only on currently available technology—effective support of long-distance telesurgery and human space missions are both feasible.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Pease RWJ (ed) (2003) Medical dictionary. Merriam-Webster, USA

  2. 2.

    SAGES Group (2000) Guidelines for the surgical practice of telemedicine. Society of American Gastrointestinal Endoscopic Surgeons. Surg Endosc 14(10):975–979

  3. 3.

    Rosser JC Jr, Young SM, Klonsky J (2007) Telementoring: an application whose time has come. Surg Endosc 21(8):1458–1463. doi:10.1007/s00464-007-9263-3

  4. 4.

    Challacombe B, Kavoussi L, Patriciu A, Stoianovici D, Dasgupta P (2006) Technology Insight: telementoring and telesurgery in urology. Nat Clin Practice Urol 3:611–617

  5. 5.

    Ballantyne GH (2007) The future of telerobotic surgery. In: Patel VR (ed) Robotic urologic surgery. Springer, Columbus, US, pp 199–206

  6. 6.

    Sterbis JR, Hanly EJ, Herman BC, Marohn MR, Broderick TJ, Shih SP, Harnett B, Doarn C, Schenkman NS (2008) Transcontinental telesurgical nephrectomy using the da Vinci robot in a porcine model. Urology 71(5):971–973. doi:10.1016/j.urology.2007.11.027

  7. 7.

    Lee BR, Caddedu JA, Janetschek G, Schulam P, Docimo SG, Moore RG, Partin AW, Kavoussi LR (1998) International surgical telementoring: our initial experience. Stud Health Technol Inform 50:41–47

  8. 8.

    Cubano M, Poulose BK, Talamini MA, Stewart R, Antosek LE, Lentz R, Nibe R, Kutka MF, Mendoza-Sagaon M (1999) Long-distance telementoring: a novel tool for laparoscopy aboard the USS Abraham Lincoln. Surg Endosc 13(7):673–678

  9. 9.

    Fabrizio M, Lee B, Chan D, Stoianovici D, Jarrett T, Yang C, Kavoussi LR (2000) Effect of time delay on surgical performance during telesurgical manipulation. J Endourol 14(2):133–138

  10. 10.

    Allen CS, Burnett R, Charles J, Cucinotta F, Fullerton R, Goodman JR, Griffith AD, Kosmo JJ, Perchonok M, Railsback J, Rajulu S, Stilwell D, Thomas G, Tri T (2003) Guidelines and capabilities for designing human missions, NASA/Johnson Space Center, TM-2003-210785

  11. 11.

    Alexander AD (1973) Impacts of telemation on modern society. Proc. of Human Factors and Ergonomics Society Annual Meeting 17(2):299–304

  12. 12.

    Satava RM (1995) Virtual reality, telesurgery, and the new world order of medicine. J Image Guided Surg 1:12–16

  13. 13.

    Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH (2005) In touch with robotics: neurosurgery for the future. Neurosurgery 56(3):421–433. doi:10.1227/01.NEU.0000153929.68024

  14. 14.

    Eadie LH, Seifalian aM, Davidson BR (2003) Telemedicine in surgery. Br J Surg 90(6):647–658. doi:10.1002/bjs.4168

  15. 15.

    Ballantyne GH, Marescaux J, Giulianotti PC (eds) (2004) Primer of robotic & telerobotic surgery. Lippincott Williams & Wilkins, Philadelphia, PA

  16. 16.

    Flynn E (2005) Telesurgery in the United States. J Homeland Defense 6:24–28

  17. 17.

    Nguan C, Miller B, Patel R, Luke PP, Schlachta CM (2008) Pre-clinical remote telesurgery trial of a da Vinci telesurgery prototype. Int J Med Robotics Comput Assist Surg 4:304–309. doi:10.1002/rcs.210

  18. 18.

    Mendez I, Hill R, Clarke D, Kolyvas G, Walling S (2005) Robotic long-distance telementoring in neurosurgery. Neurosurgery 56(3):434–440. doi:10.1227/01.NEU.0000153928.51881.27

  19. 19.

    Kumar S, Marescaux J (eds) (2008) Telesurgery. Springer, Berlin

  20. 20.

    Rayman R (2009) Is surgery a remote possibility? Robotic surgical system under development has telesurgery capabilities. Health Technol Trends 21(7):5–7

  21. 21.

    Das H, Ohm TI, Boswell C, Steele RO, Rodriguez G (2001) Robot-assisted microsurgery development at JPL. In: Akay M, Marsh A (eds) Information technologies in medicine, Vol. II: rehabilitation and treatment. Wiley, New York, pp 85–99

  22. 22.

    Rosen J, Hannaford B (2006) Doc at a distance. IEEE Spectrum 8(10):34–39

  23. 23.

    Lum MJ, Friedman DC, Sankaranarayanan G, King H, Fodero K, Leuschke R, Hannaford B (2009) The RAVEN: design and validation of a telesurgery system. Int J Robot Res 28(9):1183–1197. doi:10.1177/0278364909101795

  24. 24.

    Kamler K (2007) How I Survived a Zero-G Robot Operating Room: Extreme Surgeon. Popular Mechanics—online edition. Available: www.popularmechanics.com/science/robotics/4230102.html

  25. 25.

    Doarn CR, Anvari M, Low T, Broderick TJ (2009) Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed J e-Health 15(4):325–335. doi:10.1089/tmj.2008.0123

  26. 26.

    Hagn U, Tobergte RK, Jörg MN, Gröger GP, Seibold FF, Hacker AN et al (2010) DLR MiroSurge : a versatile system for research in endoscopic telesurgery. Int J CARS 5:183–193. doi:10.1007/s11548-009-0372-4

  27. 27.

    Rentschler ME, Dumpert J, Platt SR, Oleynikov D, Farritor SM, Iagnemma K (2006) Mobile In Vivo Biopsy Robot. Proc. of the 2006 IEEE International Conference on Robotics and Automation, Orlando, pp 4155–4160

  28. 28.

    Menciassi A, Dario P (2009) Miniaturized robotic devices for endoluminal diagnosis and surgery: a single-module and a multiple-module approach. Proc. 31st Int Conf of the IEEE Engineering in Medicine and Biology Society, pp 6842–6845. doi:10.1109/IEMBS.2009.5334474

  29. 29.

    Eirik L, Johansen B, Gjelsvik T, Langø T (2009) Ultrasound based localization of wireless microrobotic endoscopic capsule for the GI tract. Proc. 21st Conference of the Society for Medical Innovation and Technology

  30. 30.

    Lum M, Friedman D, Sankaranarayanan G, King H, Wright A, Sinanan M, Lendvay T, Rosen J, Hannaford B (2008) Objective assessment of telesurgical robot systems: Telerobotic FLS. Medicine Meets Virtual Reality (MMVR). Long Beach, CA, pp 263–265

  31. 31.

    King H, Hannaford B, Kwok K, Yang G, Griffiths P, Okamura A, et al (2010) Plugfest 2009: global interoperability in telerobotics and telemedicine. IEEE International Conference on Robotics and Automation, Anchorage, AK, pp 1733–1738

  32. 32.

    Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–492

  33. 33.

    Anvari M (2004) Robot-assisted remote telepresence surgery. Surg Innov 11(2):123–128. doi:10.1177/107155170401100209

  34. 34.

    Rayman R, Croome K, Galbraith N, Mcclure R, Morady R, Peterson S, Smith S, Subotic V, Van Wynsberghe A, Patel R, Primak S (2007) Robotic telesurgery: a real-world comparison of ground- and satellite-based Internet performance. Int J Med Robotics Comput Assist Surg 3:111–116. doi:10.1002/rcs.133

  35. 35.

    Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello A, Livolsi L, Santagostino A, Santinelli V (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47(7):1390–1400. doi:10.1016/j.jacc.2005.11.058

  36. 36.

    Thirsk R, Williams D, Anvari M (2007) NEEMO 7 undersea mission. Acta Astronautica 60(4–7):512–517. doi:10.1016/j.actaastro.2006.09.015

  37. 37.

    Peters J, Fried G, Swanstrom L, Soper N, Sillin L (2004) Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 135(1):21–27

  38. 38.

    Campbell MR, Kirkpatrick AW, Billica RD, Johnston SL, Jennings R, Short D, Hamilton D, Dulchavsky SA (2001) Endoscopic surgery in weightlessness: the investigation of basic principles for surgery in space. Surg Endosc 15(12):1413–1418. doi:10.1007/s004640080178

  39. 39.

    Doctors remove tumor in first zero-g surgery. New Scientist (September 2006). Available: http://www.newscientist.com/article/dn10169-doctors-remove-tumour-in-first-zerog-surgery.html

  40. 40.

    Berlocher G (2009) Minimizing Latency in Satellite Networks. Via Satellite, Published at: www.viasatellite.com

  41. 41.

    Lum MJ, Rosen J, Lendvay TS, Wright AS, Sinanan MN, Hannaford B (2008) TeleRobotic fundamentals of laparoscopic surgery (FLS): effects of time delay-pilot study. Proceedings of the international conference of the IEEE engineering in medicine and biology society, pp 5597–600. doi:10.1109/IEMBS.2008.4650483

  42. 42.

    Campbell MR, Billica RD (2008) Surgical capabilities. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer, Berlin, Ch. 6., pp 123–138

  43. 43.

    Haidegger T, Benyo Z (2008) Surgical robotic support for long duration space missions. Acta Astronautica 63(7–10):996–1005. doi:10.1016/j.actaastro.2008.01.005

  44. 44.

    Thompson JM, Ottensmeyer MP, Sheridan TB (1999) Human factors in telesurgery: effects of time delay and asynchrony in video and control feedback with local manipulative assistance. Telemed J 5(2):129–137. doi:10.1089/107830299312096

  45. 45.

    Rayman R, Croome K, Galbraith N, McClure R, Morady R, Peterson S, Smith S, Subotic V, Van Wynsberghe A, Primak S (2006) Long-distance robotic telesurgery: a feasibility study for care in remote environments. Int J Med Robotics Comput Assist Surg 2:216–224. doi:10.1002/rcs.99

Download references


The research was supported by the National Office for Research and Technology (NKTH), Hungarian National Scientific Research Foundation grants OTKA T69055, CK80316.


Drs. Benyó, Sándor, and Haidegger have no conflicts of interest or financial ties to disclose.

Author information

Correspondence to Tamás Haidegger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haidegger, T., Sándor, J. & Benyó, Z. Surgery in space: the future of robotic telesurgery. Surg Endosc 25, 681–690 (2011). https://doi.org/10.1007/s00464-010-1243-3

Download citation


  • Robotic surgery
  • Teleoperation
  • Minimally invasive surgery
  • Weightlessness