pp 1–6 | Cite as

Concordant Validity of a Digital Peak Cough Flow Meter to Assess Voluntary Cough Strength in Individuals with ALS

  • L. Tabor-GrayEmail author
  • T. Vasilopoulos
  • E. K. Plowman
Original Article


Peak cough flow represents an important metric directly related to the physiologic ability of an individual to defend the airway or expel tracheal aspirate. Given the high prevalence of dysphagia and dystussia in individuals with amyotrophic lateral sclerosis (ALS) and recent findings that the expiratory phase of voluntary cough is significantly impaired in ALS individuals, we aimed to determine the reproducibility of an affordable, portable peak cough flow (PCF) meter for the assessment of cough production in individuals with ALS. 109 individuals with ALS completed voluntary cough testing using both the research cough spirometry equipment and a digital peak cough flow meter. Maximum peak expiratory cough flow rates were obtained from each device. Analyses included paired t test, Pearson’s correlation, and Lin’s concordance correlation to determine the degree of agreement and reproducibility between cough measurement devices (alpha = 0.05). Mean differences between peak cough flow test values (L/min) across instruments were not statistically significant (mean difference =  − 2.93; 95% CI − 18.67, 12.82; p = 0.713). PCF values obtained from the digital peak cough flow meter and the research cough spirometry equipment were strongly associated (r = 0.826, p < 0.000) and demonstrated a high level of agreement and reproducibility (ρc = 0.824, 95% CI 0.754, 0.876). These data validate the use of an inexpensive and portable digital peak cough flow device to index peak cough flow strength in individuals with ALS. This assessment could easily be incorporated into a multidisciplinary ALS clinical setting to index the physiologic ability of an individual to protect the airway.


Cough Deglutition Deglutition disorders Airway protection Amyotrophic lateral sclerosis 



This study was funded by the National Institute of Neurological Disorders and Stroke (1R01 NS100859), the Amyotrophic Lateral Sclerosis Association Clinical Management Grant, the University of Florida Breathing Research and Therapeutics Training Program (T32HL134621), and the Center for Respiratory Research and Rehabilitation.

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55. Scholar
  2. 2.
    Mehta P, Antao V, Kaye W, Sanchez M, Williamson D, Bryan L, Muravov O, Horton K. Prevalence of amyotrophic lateral sclerosis—United States, 2010–2011. MMWR Surveill Summ. 2014;63(7):1–13.Google Scholar
  3. 3.
    Britton D, Karam C, Schindler JS. Swallowing and secretion management in neuromuscular disease. Clin Chest Med. 2018;39(2):449–57. Scholar
  4. 4.
    Tabor L, Gaziano J, Watts S, Robison R, Plowman EK. Defining swallowing-related quality of life profiles in individuals with Amyotrophic lateral sclerosis. Dysphagia. 2016. Scholar
  5. 5.
    Greenwood DI. Nutrition management of amyotrophic lateral sclerosis. Nutr Clin Pract. 2013;28(3):392–9. Scholar
  6. 6.
    Ruoppolo G, Schettino I, Frasca V, Giacomelli E, Prosperini L, Cambieri C, Roma R, Greco A, Mancini P, De Vincentiis M, Silani V, Inghilleri M. Dysphagia in amyotrophic lateral sclerosis: prevalence and clinical findings. Acta Neurol Scand. 2013;128(6):397–401. Scholar
  7. 7.
    Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld J, Shoesmith C, Strong MJ, Woolley SC. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1218–26. Scholar
  8. 8.
    Marin B, Beghi E, Vial C, Bernard E, Lautrette G, Clavelou P, Guy N, Lemasson G, Debruxelles S, Cintas P, Antoine JC, Camdessanche JP, Logroscino G, Preux PM, Couratier P. Evaluation of the application of the European guidelines for the diagnosis and clinical care of amyotrophic lateral sclerosis (ALS) patients in six French ALS centres. Eur J Neurol. 2016;23(4):787–95. Scholar
  9. 9.
    Plowman EK, Watts SA, Robison R, Tabor L, Dion C, Gaziano J, Vu T, Gooch C. Voluntary cough airflow differentiates safe versus Unsafe swallowing in amyotrophic lateral sclerosis. Dysphagia. 2016. Scholar
  10. 10.
    Pattee GL, Plowman EK, Brooks BR, Berry JD, Atassi N, Chapin JL, Garand K, Yunusova Y, McIlduff CE, Young E, Costello JM, Macklin EA, Locatelli ER, Silani V, Heitzman D, Wymer J, Goutman SA, Gelinas DF, Smith R, Perry B, Nalipinski P, Stipancic K, O'Brien M, Sullivan SL, Green J. Best practices protocol for the evaluation of bulbar dysfunction: summary recommendations from the NEALS bulbar subcommittee symposium. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(3–4):311–2. Scholar
  11. 11.
    Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld J, Shoesmith C, Strong MJ, Woolley SC. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1227–333. Scholar
  12. 12.
    Association ASLaH, Clinical indicators for instrumental assessment of dysphagia (guidelines). ASHA Suppl. 2000;20:18–9.Google Scholar
  13. 13.
    Pitts T, Troche M, Mann G, Rosenbek J, Okun MS, Sapienza C. Using voluntary cough to detect penetration and aspiration during oropharyngeal swallowing in patients with Parkinson disease. Chest. 2010;138(6):1426–31. Scholar
  14. 14.
    Pitts T, Bolser D, Rosenbek J, Troche M, Sapienza C. Voluntary cough production and swallow dysfunction in Parkinson's disease. Dysphagia. 2008;23(3):297–301. Scholar
  15. 15.
    Smith Hammond CA, Goldstein LB, Zajac DJ, Gray L, Davenport PW, Bolser DC. Assessment of aspiration risk in stroke patients with quantification of voluntary cough. Neurology. 2001;56(4):502–6.CrossRefGoogle Scholar
  16. 16.
    Hegland K, Okun M, Troche M. Sequential voluntary cough and aspiration or aspiration risk in Parkinson's disease. Lung. 2014;192(4):601.CrossRefGoogle Scholar
  17. 17.
    Miles A, Zeng ISL, McLauchlan H, Huckabee ML. Cough reflex testing in dysphagia following stroke: a randomized controlled trial. J Clin Med Res. 2013;5(3):222–33.Google Scholar
  18. 18.
    Boitano LJ (2006) Management of airway clearance in neuromuscular disease. Respir Care 51(8):913–922; discussion 922–914 Google Scholar
  19. 19.
    Benditt JO. Respiratory complications of amyotrophic lateral sclerosis. Semin Respir Crit Care Med. 2002;23(3):239–47. Scholar
  20. 20.
    Sancho J, Servera E, Diaz J, Marin J. Comparison of peak cough flows measured by pneumotachograph and a portable peak flow meter. Am J Phys Med Rehabil. 2004;83(8):608–12.CrossRefGoogle Scholar
  21. 21.
    Silverman EP, Carnaby-Mann G, Pitts T, Davenport P, Okun MS, Sapienza C. Concordance and discriminatory power of cough measurement devices for individuals with Parkinson disease. Chest. 2014;145(5):1089–96.CrossRefGoogle Scholar
  22. 22.
    Hutcheson KA, Barrow MP, Warneke CL, Wang Y, Eapen G, Lai SY, Barringer DA, Plowman EK, Lewin JS. Cough strength and expiratory force in aspirating and nonaspirating postradiation head and neck cancer survivors. Laryngoscope. 2017. Scholar
  23. 23.
    Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. 1999;169:13–211. Scholar
  24. 24.
    Lawrence IKL. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68. Scholar
  25. 25.
    Laciuga H, Brandimore AE, Troche MS, Hegland KW. Analysis of clinicians' perceptual cough evaluation. Dysphagia. 2016;31(4):521–30. Scholar
  26. 26.
    Hassan HE, Aboloyoun AI. The value of bedside tests in dysphagia evaluation. Egyptian Journal of Ear, Nose, Throat and Allied Sciences. 2014;15(3):197–203. Scholar
  27. 27.
    Smith JA, Ashurst HL, Jack S, Woodcock AA, Earis JE. The description of cough sounds by healthcare professionals. Cough. 2006;2(1):1. Scholar
  28. 28.
    Plowman E, Tabor Gray L, Magennis K, Chapin J, Robison R, Anderson A, Vasilopoulos T, Wymer J. Validation of the physiologic risk index for swallowing impairment (PRISIM) in ALS. Paper presented at the Dysphagia Research Society, San Diego, CA; 2019.Google Scholar
  29. 29.
    Matsuda C, Shimizu R, Nakayama Y, Haraguchi M. Cough peak flow decline rate predicts survival in patients with amyotrophic lateral sclerosis. Muscle Nerve. 2018;59(2):168–73. Scholar
  30. 30.
    Tilanus TBM, Groothuis JT, TenBroek-Pastoor JMC, Feuth TB, Heijdra YF, Slenders JPL, Doorduin J, Van Engelen BG, Kampelmacher MJ, Raaphorst J. The predictive value of respiratory function tests for non-invasive ventilation in amyotrophic lateral sclerosis. Respir Res. 2017;18(1):144. Scholar
  31. 31.
    Green JR, Yunusova Y, Kuruvilla MS, Wang J, Pattee GL, Synhorst L, Zinman L, Berry JD. Bulbar and speech motor assessment in ALS: challenges and future directions. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):494–500. Scholar
  32. 32.
    McHorney CA, Rosenbek JC. Functional outcome assessment of adults with oropharyngeal dysphagia. Semin Speech Lang. 1998;19(3):235–246; quiz 247.
  33. 33.
    Watts SA, Tabor L, Plowman EK. To cough or not to cough? Examining the potential utility of cough testing in the clinical evaluation of swallowing. Curr Phys Med Rehabil Rep. 2016;4(4):262–76. Scholar
  34. 34.
    Plowman EK, Tabor LC, Wymer J, Pattee G. The evaluation of bulbar dysfunction in amyotrophic lateral sclerosis: survey of clinical practice patterns in the United States. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:351–7. Scholar
  35. 35.
    Soriani MH, Desnuelle C. Care management in amyotrophic lateral sclerosis. Revue Neurol. 2017;173(5):288–99. Scholar
  36. 36.
    Brandimore AE, Troche MS, Huber JE, Hegland KW. Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults. Front Physiol. 2015;6:284.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, Holy Cross Medical GroupPhil Smith Neuroscience InstituteFort LauderdaleUSA
  2. 2.Swallowing Systems CoreUniversity of FloridaGainesvilleUSA
  3. 3.Department of Anesthesiology and Orthopedics, College of MedicineUniversity of FloridaGainesvilleUSA
  4. 4.Speech, Language and Hearing Science DepartmentUniversity of FloridaGainesvilleUSA
  5. 5.Department of NeurologyUniversity of FloridaGainesvilleUSA

Personalised recommendations