Advertisement

The Assembly Problem for Alternating Semiregular Polytopes

  • Barry Monson
  • Egon SchulteEmail author
Branko Grünbaum Memorial Issue
  • 3 Downloads

Abstract

In the classical setting, a convex polytope is called semiregular if its facets are regular and its symmetry group is transitive on vertices. This paper continues our study of alternating abstract semiregular polytopes \(\mathcal {S}\). These structures have two kinds of abstract regular facets \(\mathcal {P}\) and \(\mathcal {Q}\), still with combinatorial automorphism group transitive on vertices. Furthermore, for some interlacing number \(k\geqslant 1\), k copies each of \(\mathcal {P}\) and \(\mathcal {Q}\) can be assembled in alternating fashion around each face of co-rank 2 in \(\mathcal {S}\). Here we focus on constructions involving interesting pairs of polytopes \(\mathcal {P}\) and \(\mathcal {Q}\). In some cases, \(\mathcal {S}\) can be constructed for general values of k. In other remarkable instances, interlacing with certain finite interlacing numbers proves impossible.

Keywords

Abstract semiregular polytopes Tail-triangle C-groups 

Mathematics Subject Classification

Primary 51M20 Secondary 52B15 

Notes

Acknowledgements

Egon Schulte: Supported by the Simons Foundation Award No. 420718.

References

  1. 1.
    Coxeter, H.S.M.: Regular and semi-regular polytopes. I. Math. Z. 46, 380–407 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973)zbMATHGoogle Scholar
  3. 3.
    Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 14, 3rd edn. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  4. 4.
    Grünbaum, B.: Regularity of graphs, complexes and designs. In: Problèmes Combinatoires et Théorie des Graphes. Colloques Internationaux du Centre National de la Recherche Scientifique, vol. 260, pp. 191–197. CNRS, Paris (1978)Google Scholar
  5. 5.
    Grünbaum, B.: Regular polyhedra-old and new. Aequationes Math. 16(1–2), 1–20 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hartley, M.I.: Locally projective polytopes of type \(\{4,3,\ldots,3, p\}\). J. Algebra 290(2), 322–336 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hubard, I.: Two-orbit polyhedra from groups. Eur. J. Comb. 31(3), 943–960 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hubard, I., Schulte, E.: Two-orbit polytopes (in preparation)Google Scholar
  9. 9.
    Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Johnson, D.L.: Topics in the Theory of Group Presentations. London Mathematical Society Lecture Note Series, vol. 42. Cambridge University Press, Cambridge (1980)CrossRefzbMATHGoogle Scholar
  11. 11.
    Martini, H.: A hierarchical classification of Euclidean polytopes with regularity properties. In: Bisztriczky, T., et al. (eds.) Polytopes: Abstract, Convex and Computational. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 440, pp. 71–96. Kluwer, Dordrecht (1994)CrossRefGoogle Scholar
  12. 12.
    McMullen, P., Schulte, E.: Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications, vol. 92. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mixer, M., Schulte, E., Weiss, A.I.: Hereditary polytopes. In: Connelly, R., Ivić Weisee, A., Whiteley, W. (eds.) Rigidity and Symmetry. Fields Institute Communications, vol. 70, pp. 279–302. Springer, New York (2014)CrossRefGoogle Scholar
  14. 14.
    Monson, B., Pellicer, D., Williams, G.: Mixing and monodromy of abstract polytopes. Trans. Am. Math. Soc. 366(5), 2651–2681 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Monson, B., Schulte, E.: Semiregular polytopes and amalgamated C-groups. Adv. Math. 229(5), 2767–2791 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Monson, B., Schulte, E.: The interlacing number for alternating semiregular polytopes (in preparation)Google Scholar
  17. 17.
    Monson, B., Schulte, E.: Universal alternating semiregular polytopes (in preparation)Google Scholar
  18. 18.
    Pisanski, T., Schulte, E., Ivić Weiss, A.: On the size of equifacetted semi-regular polytopes. Glas. Mat. Ser. III 47(67)(2), 421–430 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schulte, E.: On arranging regular incidence-complexes as faces of higher-dimensional ones. Eur. J. Comb. 4(4), 375–384 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schulte, E.: Amalgamation of regular incidence-polytopes. Proc. Lond. Math. Soc. 56(2), 303–328 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schulte, E., Ivić Weiss, A.: Chiral polytopes. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 493–516. American Mathematical Society, Providence, RI (1991)Google Scholar
  22. 22.
    The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.4 (2011). http://www.gap-system.org

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of New BrunswickFrederictonCanada
  2. 2.Northeastern UniversityBostonUSA

Personalised recommendations