Advertisement

Discrete & Computational Geometry

, Volume 61, Issue 2, pp 452–463 | Cite as

Hardness of almost embedding simplicial complexes in \(\mathbb {R}^d\)

  • Arkadiy SkopenkovEmail author
  • Martin Tancer
Article
  • 54 Downloads

Abstract

A map \(f:K\rightarrow \mathbb {R}^d\) of a simplicial complex is an almost embedding if \(f(\sigma )\cap f(\tau )=\emptyset \) whenever \(\sigma ,\tau \) are disjoint simplices of K.

TheoremFix integers\(d,k\ge 2\)such that\(d={3k}/2+1\).
  1. (a)

    Assume that\(\ne \) NP. Then there exists a finitek-dimensional complexKthat does not admit an almost embedding in\(\mathbb {R}^d\)but for which there exists an equivariant map from the deleted product\(\widetilde{K}\) to \(S^{d-1}\).

     
  2. (b)

    The algorithmic problem of recognition of almost embeddability of finitek-dimensional complexes in\(\mathbb {R}^d\)is NP-hard.

     
The proof is based on the technique from the Matoušek–Tancer–Wagner paper (proving an analogous result for embeddings), and on singular versions of the higher-dimensional Borromean rings lemma. The new part of our argument is a stronger ‘almost embeddings’ version of the generalized van Kampen–Flores theorem.

Keywords

Almost embedding NP-hard Equivariant map PL embedding 

Mathematics Subject Classification

Primary 57Q35 Secondary 68Q17 05E45 

Notes

Acknowledgements

We are thankful to Slava Krushkal and the anonymous referees for helpful remarks. Arkadiy Skopenkov: Research supported by the Russian Foundation for Basic Research Grant No. 15-01-06302, by Simons-IUM Fellowship and by the D. Zimin’s Dynasty Foundation Grant. Martin Tancer: Supported by the GAČR project 16-01602Y and by Charles University project UNCE/SCI/004.

References

  1. 1.
    Avvakumov, S., Mabillard, I., Skopenkov, A., Wagner, U.: Eliminating higher-multiplicity intersections, III. Codimension 2. arXiv:1511.03501
  2. 2.
    Bárány, I., Blagojević, P.V.M., Ziegler, G.M.: Tverberg’s theorem at 50: extensions and counterexamples. Notices Am. Math. Soc. 63(7), 732–739 (2016). http://www.ams.org/journals/notices/201607
  3. 3.
    Blagojevič, P.V.M., Ziegler, G.M.: Beyond the Borsuk–Ulam theorem: the topological Tverberg story. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pp. 273–341. Springer, Cham (2017). arXiv:1605.07321
  4. 4.
    Boltyanskiy, V.G., Efremovich, V.A.: Intuitive Combinatorial Topology. Universitext. Springer, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Čadek, M., Krčal, M., Vokřinek, L.: Algorithmic solvability of the lifting-extension problem. Discrete Comput. Geom. 57(4), 915–965 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, M.M.: Simplicial structures and transverse cellularity. Ann. Math. 85, 218–245 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Flores, A.: Über \(n\)-dimensionale Komplexe die im \(R_{2n + 1}\) absolut selbstverschlungen sind. Ergeb. Math. Kolloq. 4, 6–7 (1932/1934)Google Scholar
  8. 8.
    Freedman, M., Krushkal, V.: Geometric complexity of embeddings in \({\mathbb{R}}^d\). Geom. Funct. Anal. 24(5), 1406–1430 (2014). arXiv:1311.2667 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Freedman, M.H., Krushkal, V.S., Teichner, P.: Van Kampen’s embedding obstruction is incomplete for 2-complexes in \({\mathbb{R}}^4\). Math. Res. Lett. 1(2), 167–176 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goaoc, X., Paták, P., Patáková, Z., Tancer, M., Wagner, U.: Bounding Helly numbers via Betti numbers. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pp. 407–447. Springer, Cham (2017). arXiv:1310.4613
  11. 11.
    Gonçalves, D., Skopenkov, A.: Embeddings of homology equivalent manifolds with boundary. Topol. Appl. 153(12), 2026–2034 (2006). arXiv:1207.1326 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hudson, J.F.P.: Piecewise Linear Topology. University of Chicago Lecture Notes. Benjamin, New York (1969)zbMATHGoogle Scholar
  13. 13.
    Matoušek, J.: A Helly-type theorem for unions of convex sets. Discrete Comput. Geom. 18(1), 1–12 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Matoušek, J., Tancer, M., Wagner, U.: Hardness of embedding simplicial complexes in \({\mathbb{R}}^d\). J. Eur. Math. Soc. 13(2), 259–295 (2011). arXiv:0807.0336 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Segal, J., Spież, S.: Quasi embeddings and embeddings of polyhedra in \({\mathbb{R}}^m\). Topol. Appl. 45(3), 275–282 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Segal, J., Skopenkov, A., Spież, S.: Embeddings of polyhedra in \({\mathbb{R}}^m\) and the deleted product obstruction. Topol. Appl. 85(1–3), 335–344 (1998)CrossRefzbMATHGoogle Scholar
  17. 17.
    Shapiro, A.: Obstructions to the imbedding of a complex in a euclidean space I. The first obstruction. Ann. Math. 66, 256–269 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Seifert, H., Threlfall, W.: Seifert and Threlfall: A Textbook of Topology. Pure and Applied Mathematics, vol. 89. Academic Press, New York (1980)zbMATHGoogle Scholar
  19. 19.
    Skopenkov, A.B.: Embedding and knotting of manifolds in Euclidean spaces. In: Young, N., Choi, Y. (eds.) Surveys in Contemporary Mathematics. London Mathematical Society Lecture Note Series, vol. 347, pp. 248–342. Cambridge University Press, Cambridge (2008). arXiv:math/0604045
  20. 20.
    Skopenkov, A.: Realizability of hypergraphs and Ramsey link theory. arXiv:1402.0658
  21. 21.
    Skopenkov, A.: A user’s guide to disproof of topological Tverberg conjecture. arXiv:1605.05141
  22. 22.
    Skopenkov, A.: On van Kampen–Flores, Conway–Gordon–Sachs and Radon theorems. Russ. Math. Surveys 73(2), 344–377 (2018). arXiv:1704.00300
  23. 23.
    Skopenkov, A.: Algebraic topology from algorithmic point of view (draft of a book). http://www.mccme.ru/circles/oim/algor.pdf
  24. 24.
    Skopenkov, A.: Invariants of graph drawings in the plane. arXiv:1805.10237
  25. 25.
    van Kampen, E.R.: Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg 9(1), 72–78 (1932)CrossRefzbMATHGoogle Scholar
  26. 26.
    Volodin, I.A., Kuznetsov, V.E., Fomenko, A.T.: The problem of discriminating algorithmically the standard three-dimensional sphere. Russ. Math. Surveys 29(5), 71–172 (1974)CrossRefzbMATHGoogle Scholar
  27. 27.
    Weber, C.: Plongements de polyhèdres dans le domaine métastable. Comment. Math. Helv. 42, 1–27 (1967)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institutskiy per.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  2. 2.Independent University of MoscowMoscowRussia
  3. 3.Department of Applied MathematicsCharles University in PraguePraha 1Czech Republic

Personalised recommendations